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Abstract 18 

Yield prediction has been determined to be vital in sustainable forest management. 19 

Recently, research trends have shifted from stand-level to individual-level yield 20 

prediction. In this study, we examined the effectiveness of yield prediction models based 21 

on a distance-independent approach for Japanese cedar (Cryptomeria japonica) trees in 22 

western Japan. We further examined the accuracy of the models by reference to existing 23 

data collected long-term. First, we constructed distance-independent height, diameter 24 

growth, and survival models. Then, we simulated for approximately 50 years individual 25 

tree height, diameter at breast height (DBH), and volume growth using the test data. We 26 

then compared the predicted and observed values and calculated root mean square error 27 

(RMSE) and bias to evaluate the model accuracy. The models were noted to perform well 28 

when predicting mean height, DBH, and volume for Japanese cedar trees; in fact, they 29 

adequately predicted the diameter distribution. Our results suggest that distance-30 

independent models could adequately predict long-term mean values and diameter 31 

distribution. However, RMSE and bias indicated that error propagation occurred over 32 

longer time spans. Thus, it is effective to conduct actual measurements at some point in 33 

the forest development phase and use the measurements as initial values for short- or 34 

medium-term predictions.  35 

Keywords: Yield prediction, Distance-independent competition index, Simulation, 36 

Generalized linear mixed model, Japanese cedar.   37 
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1. Introduction 38 

 Yield prediction is crucial to sustainable forest management and planning, and various 39 

methods have been validated in countries targeting many species (e.g., Monserud and 40 

Sterba 1996; Fox et al. 2001; Böhm et al. 2011; Weiskittel et al. 2011; de-Miguel et al. 41 

2013). Yield prediction methods follow either a stand- or individual-level approach, with 42 

the conventional method operating at stand level. Over time, there has been a shift toward 43 

individual-level approaches (Monserud and Sterba 1996; Hasenauer 2006). 44 

Yield tables of major coniferous species in the national forests in Japan were published 45 

in 1933 (Hayao 1961). The tables cover each region under different site productivities 46 

and include data on stand mean height, diameter at breast height (DBH), and volume 47 

according to age. However, these yield tables did not account for various treatment 48 

scenarios such as initial planting density, thinning intensity, and thinning methods; they 49 

were compiled based on assumptions of growth under standard conditions. For this reason, 50 

several stand yield prediction systems, which consider growth under various treatment 51 

regimes, have been developed (Konohira 1995). For example, the Local Yield 52 

Construction System (LYCS) takes account of when and how thinning is conducted 53 

(Nakajima et al. 2010). LYCS can be adapted to three major coniferous species: Japanese 54 

cedar (Cryptomeria japonica), Japanese cypress (Chamaecyparis obtusa), and Japanese 55 

larch (Larix kaempferi). Moreover, LYCS provides yield growth predictions assuming 56 

low initial planting density (Shiraishi 2004) and long-rotation management (Nakajima 57 

and Shiraishi 2007). These factors have led to yield prediction at stand level being widely 58 

used in Japan.  59 

The conventional yield prediction systems in Japan have a major issue, that is, the 60 

systems cannot select trees to remove for thinning treatment. Therefore, we could not 61 
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understand the residual tree growth process. These systems are not suitable for selecting 62 

target trees for various thinning treatments and are insufficient to comprehend the specific 63 

residual trees growth. For this reason, yield prediction is required based on an individual-64 

level approach in our country; however, yield prediction employing the approach for 65 

common Japanese conifer species has not yet been examined.  66 

Some studies have tried yield prediction system using an individual-level approach; for 67 

example, Scolforo et al. (2019) constructed a growth and yield system for eucalypts. 68 

Seppänen and Mäkinen (2020) tried individual- and stand-level yield prediction systems 69 

for teak (Tectona grandis) plantations. Individual-level approaches are identified to be 70 

generally superior to stand-level approaches because they are flexible and better able to 71 

characterize growth response under various silvicultural practices (Weiskittel et al. 2011).  72 

Competition indices are widely used for individual-level yield prediction, and these can 73 

be classified into distance-dependent and distance-independent (Canham et al. 2004). A 74 

distance-dependent competition index requires information on the distance between the 75 

subject tree and competition trees, whereas a distance-independent competition index 76 

does not. Some researchers developed tree growth model based on an individual-level 77 

distance-dependent approach (e.g., Coates et al. 2003; Alegria and Tomé 2013; Bose et 78 

al. 2015). For example, Alegria and Tomé (2013) constructed a distance-dependent 79 

individual tree growth and yield model for uneven aged maritime pine (Pinus pinaster 80 

Aiton) stands, and they suggested that the efficacy of distance-dependent competition 81 

indices was not clear compared with distance-independent competition indices. In general, 82 

distance-dependent competition indices are regarded as having higher accuracy as they 83 

are known to carry information on location and more reliably express local competition 84 

(Wimberly and Bare 1996; Miyamoto and Amano 2002; Contreras et al. 2011). However, 85 
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some studies maintain that the accuracy of models based on the two indices is the same 86 

(Daniels et al. 1986; Biging and Dobbertin 1995; Kahriman et al. 2018; Kuehne et al. 87 

2019) and that distance-independent competition indices may satisfactorily predict yield 88 

growth. For example, Palahí et al. (2003) developed individual-level distance-89 

independent tree growth and mortality models for Scots pine (Pinus sylvestris L.). Sun et 90 

al. (2019) evaluated the six distance-independent indices for loblolly pine (Pinus taeda 91 

L.) diameter growth and survival models based on an individual approach. Their results 92 

indicated that the distance-independent tree growth and mortality models were well 93 

predicted actual tree growth and mortality. If the distance-independent models would 94 

predict stand growth and yield for Japanese common species well, it is easy and cost-95 

effective to predict yield growth because the distance-independent competition indices do 96 

not require the information of the trees’ positions in the stand. Our previous study 97 

indicated that a distance-independent diameter growth model offered accurate prediction 98 

of actual diameter growth in Japanese cedar trees (Fukumoto et al. 2020a). There is the 99 

possibility that a distance-independent based yield prediction model would predict actual 100 

yield growth well. To evaluate the effectiveness of yield prediction methods, we need to 101 

clarify model accuracy using test data. However, studies that have verified the accuracy 102 

between predicted and observed values using long-term data remain to be lacking. 103 

Thus, this study aims to evaluate the effectiveness of long-term yield prediction based 104 

on a distance-independent individual tree approach for Japanese cedar trees in western 105 

Japan as a case study and to further validate our yield prediction model using long-term 106 

data available for two existing permanent plots. 107 

 108 

2. Materials and Methods 109 
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2-1. Data collection 110 

 In this study, the dataset was collected from five study sites in the Shikoku region, 111 

western Japan, wherein the mean annual temperature is 16.2 °C and mean precipitation is 112 

1322.5 mm. The study sites were in national forests located in Asagihara (A), Nishimata-113 

higashimata (B), Nakanokawa-yama (C), Kudarukawa-yama (D) (Fig. 1, Table 1), and 114 

Ichinotani-yama (T) (Fig. 1, Table 2). The data from sites A–D were used as model 115 

training data, whereas the data from site T was used as test data. Sites A–D were originally 116 

established to evaluate the effect of initial planting density and thinning intensity on 117 

Japanese cedar growth. Japanese cedar was planted between 1950 and 1964 at each site. 118 

These sites had two to six study plots 0.035–0.227 ha in area. The first measurements 119 

were conducted when the plots were 11–28 years old. The site index (SI) ranged from 120 

14.8 m to 27.7 m in each plot. SI was calculated as the upper mean height (250 trees/ha) 121 

at 40 years old. The upper mean height at 40 years old was estimated from the stand age–122 

dominant height relationship using a smoothing spline because the measurement had not 123 

been conducted at 40 years old. The census intervals were approximately 5 years, and 124 

measurements were repeated 5 to 10 times. In total, data was collected from 5,130 trees. 125 

 The test site was located in Ichinotani-yama national forest (Fig. 1). This site had two 126 

study plots (Plot 1 and Plot 2) (Table 2), each 0.109 ha in area. In these plots, cleaning 127 

and thinning from below were conducted at age 31 and 36 years, respectively. The 128 

cleaning rates, based on the number of trees in the plots, were 20 % for Plot 1 and 18 % 129 

for Plot 2; the thinning rates were 44 % and 50 %, respectively; and the SIs were 22.1 and 130 

18.0, respectively. Tree height and DBH in these plots were measured as for the other 131 

plots.  132 

The DBH of each tree was measured at 1.2 m. The tree height was obtained by measuring 133 
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approximately 30 trees selected based on diameter class. Unmeasured tree height was 134 

estimated using Näslund equation (Nigul et al. 2021). In field measurements, we recorded 135 

whether trees were dead or alive. 136 

 137 

2-2. Individual-level growth and survival models 138 

 The individual-level Japanese cedar height growth, diameter growth, and survival rate 139 

prediction models were constructed based on a generalized linear mixed-effect model. 140 

The diameter growth model had been developed in a previous study (Fukumoto et al. 141 

2020a), and the model parameters were re-estimated in this dataset. Annual individual 142 

height and diameter growth were defined, respectively, as follows: 143 

 144 

ln�ℎ𝐼𝐼,𝑖𝑖,𝑗𝑗+1� = 𝑎𝑎0 + 𝑎𝑎1𝐻𝐻𝐼𝐼,𝑖𝑖,𝑗𝑗 + 𝑎𝑎2𝐻𝐻𝐼𝐼,𝑖𝑖,𝑗𝑗2 + 𝑎𝑎3𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼,𝑖𝑖,𝑗𝑗 + 𝑎𝑎4𝑆𝑆𝑆𝑆𝐼𝐼 + 𝑎𝑎5𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼,𝑖𝑖,𝑗𝑗 + 𝜑𝜑𝐼𝐼,𝑖𝑖, (1) 145 

ln�𝑑𝑑𝐼𝐼,𝑖𝑖,𝑗𝑗+1� = 𝑏𝑏0 + 𝑏𝑏1𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼,𝑖𝑖,𝑗𝑗 + 𝑏𝑏2𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼,𝑖𝑖,𝑗𝑗2 + 𝑏𝑏3𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼,𝑖𝑖,𝑗𝑗 + 𝑏𝑏4𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗 + 𝜑𝜑𝐼𝐼,𝑖𝑖, (2) 146 

 147 

where ℎ𝐼𝐼,𝑖𝑖,𝑗𝑗 and 𝑑𝑑𝐼𝐼,𝑖𝑖,𝑗𝑗 are the annual height and diameter growth, respectively, of the 148 

subject tree i in the Ith plot between the jth measurement and the subsequent measurement. 149 

𝐻𝐻𝐼𝐼,𝑖𝑖,𝑗𝑗 and 𝐻𝐻𝐼𝐼,𝑖𝑖,𝑗𝑗2  are tree initial height and the height squared, respectively. 𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼,𝑖𝑖,𝑗𝑗 and 150 

𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼,𝑖𝑖,𝑗𝑗2  are DBH and DBH squared, respectively. 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼,𝑖𝑖,𝑗𝑗 and 𝑆𝑆𝑆𝑆𝐼𝐼 are stand age and 151 

site index, respectively. 𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼,𝑖𝑖,𝑗𝑗  and 𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗  are competition indices, calculated as 152 

follows: 153 

 154 

𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼,𝑖𝑖,𝑗𝑗 = �
𝜋𝜋
4
𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐2, (3) 155 
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𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗 =
1002

𝐻𝐻�𝐼𝐼,𝑗𝑗�𝑁𝑁𝐼𝐼,𝑗𝑗
, (4) 156 

 157 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼,𝑖𝑖,𝑗𝑗 is the basal area of trees larger than the subject trees, and 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐 is the 158 

DBH of competitor trees that have a larger diameter than the subject tree (Wykoff et al. 159 

1982). 𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗 is defined as the relative spacing index, and 𝐻𝐻�𝐼𝐼,𝑗𝑗 is the mean height. 𝑁𝑁𝐼𝐼,𝑗𝑗 160 

is the number of trees per hectare. In this study, following pre-analysis, the relative 161 

spacing index was generated using mean height (i.e. mean height of all living trees in a 162 

plot) rather than upper mean height (i.e. mean height of 250 largest trees per hectare) (see 163 

Nagumo and Minowa 1990) as this increased model accuracy. In Eqs. 1 and 2, 𝑎𝑎0 − 𝑎𝑎5 164 

and 𝑏𝑏0 − 𝑏𝑏4 are parameters, and 𝜑𝜑𝐼𝐼,𝑖𝑖 is the random effect with normal distribution for 165 

subject tree and plot. Here, measured trees were nested within plots and each tree was 166 

repeatedly measured over time. Thus, random effects were included at both the plot and 167 

tree level. 168 

An individual-tree survival model was constructed with a logistic function to calculate 169 

the annual tree survival rate. Here, the “Exposure” method was used in the model because 170 

the data were collected with irregular measurement interval t (Shaffer 2004). The annual 171 

tree survival rate 𝑆𝑆𝑖𝑖,𝐼𝐼,𝑗𝑗 of subject tree i in the Ith plot at the jth measurement is expressed 172 

as follows: 173 

 174 

𝑆𝑆𝑖𝑖,𝐼𝐼,𝑗𝑗+1 = �
1

1 + exp (−𝑐𝑐)
�
𝑡𝑡

, (5) 175 

𝑐𝑐 = 𝑐𝑐0 + 𝑐𝑐1𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝐼𝐼,𝑗𝑗 + 𝑐𝑐2𝑆𝑆𝑆𝑆𝐼𝐼 + 𝑐𝑐3𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗 + 𝑐𝑐4�𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝐼𝐼,𝑗𝑗 ∗ 𝑆𝑆𝑆𝑆𝐼𝐼,𝑗𝑗� + 𝜑𝜑𝑖𝑖,𝐼𝐼 , (6) 176 

 177 
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The interaction of terms DBH and Sr was used to express the effect of competition that is 178 

dependent on individual tree size. 𝑐𝑐0 - 𝑐𝑐4  are parameters, and 𝜑𝜑𝑖𝑖,𝐼𝐼  is the random 179 

parameter of subject tree i in the Ith plot. The lme4 package (Bates et al. 2015) in R version 180 

4.0.4 (R Core Team 2021) was used to estimate the all parameters. Note that explanatory 181 

variables for each model were selected during preliminary analysis using a stepwise 182 

method referring to AIC values. 183 

 184 

2-3. Model evaluation 185 

 To evaluate model performance, Marginal R2, Conditional R2, root mean square error 186 

(RMSE), and average bias (AB) were calculated for both height and diameter growth 187 

models following to Kozak and Kozak (2003). Then, Marginal R2 and Conditional R2 188 

(Nakagawa and Schielzeth 2013) were calculated via the MuMIn package in the 189 

r.squaredGLMM function (Barto 2020). The area under the curve (AUC) was used to 190 

evaluate survival model performance (Godeau et al. 2020). AUC is calculated by drawing 191 

the receiver operating characteristic curve (Pencina et al. 2008). The AUC value ranges 192 

from 0 to 1, where a value of 1 indicates perfect distinction. Here, the AUC values was 193 

calculated by pROC package (Robin et al. 2011).  194 

 195 

2-4. Simulation and model validation 196 

The individual tree growth for two plots in Ichinotani-yama for 53 years were simulated. 197 

Our models (Eqs. 1, 2, and 5) were initialized with the first measurement data (tree height, 198 

DBH, stand age, competition index at 12-year old). SIs were set to the estimated values 199 

from the measurements data of the plots, assuming they could be predicted separately. 200 

Then, the models run forward until 65-year old to predict the individual tree height, 201 
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diameter, and volume. The simulation interval was 1 year. The tree volume 𝑣𝑣𝑖𝑖,𝐼𝐼,𝑗𝑗 was 202 

calculated using the following equation: 203 

 204 

𝑣𝑣𝑖𝑖,𝐼𝐼,𝑗𝑗 = 𝑑𝑑0 + 𝑑𝑑1𝐻𝐻𝑖𝑖,𝐼𝐼,𝑗𝑗 + 𝑑𝑑2𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝐼𝐼,𝑗𝑗2 + 𝑑𝑑3�𝐻𝐻𝑖𝑖,𝐼𝐼,𝑗𝑗 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝐼𝐼,𝑗𝑗2 �  (7) 205 

 206 

where 𝑑𝑑0-𝑑𝑑3 are parameters as defined for each diameter class (Table 3) (Hosoda et al. 207 

2010). The thinning age and rate were adapted according to actual test data. Thinning 208 

trees were selected randomly by each diameter class, to clarify the contribution to the 209 

yield prediction system. The number of trees was calculated based on the actual thinning 210 

rate of each diameter class and predicted stand density. We defined that tree death occurs 211 

at a survival rate less than 50 %. 212 

 To validate model performance, the predicted and observed mean height, diameter, stand 213 

density, volume, and cumulative volume were compared in each plot. The predicted and 214 

observed diameter distribution at age 12, 22, 30, 46, and 65 years were also compared. 215 

Additionally, to validate the effectiveness of the prediction model, the RMSE and bias 216 

were calculated for individual height, DBH, and volume using the fixed effect only. 217 

 218 

3. Results 219 

3-1. Evaluation of growth and survival model 220 

In each model, parameters estimation results shown in Table 4. The Marginal R2 values 221 

for the height and diameter growth models were 0.23 and 0.52, respectively (Table 5). 222 

Meanwhile, the Conditional R2 values for both models were 0.25 and 0.59, respectively. 223 

The accuracy of the height growth model was found to be low in comparison with the 224 

DBH model. The RMSE for height and diameter growth were 0.2048 and 0.2050, 225 
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respectively. Average bias for both models were 0.057 and 0.048, respectively. AUC for 226 

the survival model was 0.84.  227 

 228 

3-2. Yield predictions 229 

 In Plot 1, mean height was overestimated for trees over 20 years old, though DBH was 230 

showed little difference between predicted and observed values (Fig. 2a). Stand density 231 

was also showed little difference between predicted and observed values; however, there 232 

were no trees discerned with a survival rate under 50 %. Mean volume and cumulative 233 

stand volume were predicted well for trees up to 40 years old. In Plot 2, mean height, 234 

stand density, mean tree volume, and stand volume were predicted better than DBH (Fig. 235 

2b). DBH was underestimated for trees over 40 years old. 236 

 237 

3-3. Prediction of diameter distribution 238 

In Plot 1, the diameter distribution between predicted and observed values was similar 239 

for trees up to 46 years old, beyond which the values tended to be slightly underestimated 240 

(Fig. 3a). The diameter distribution was fitted up to 36 years old in Plot 2, though 241 

diameters were underestimated beyond 41 years old (Fig. 3b). Interestingly, the tendency 242 

toward underestimation appeared after thinning treatment in both plots. 243 

 244 

3-4. Predicted accuracy of height, DBH, and volume under time series 245 

The RMSE under time series showed that the prediction accuracy worsened with 246 

increasing age (Fig. 4). The maximum RMSE values for height, DBH, and volume were 247 

5.63 m, 11.8 cm, and 0.9 m3, respectively. The bias of height in both plots showed that 248 

the predicted values were underestimated from 20 years old (Fig. 5a), with values ranging 249 
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from −4.89 to 0.31 m. For DBH, the predicted values were overestimated from 35 years 250 

old, after which point the values tended to be underestimated (Fig. 5b). The bias for DBH 251 

ranged from −2.48 to 1.19 cm. The bias for volume showed underestimation from 30 252 

years old, with values ranging from −0.36 to 0.02 m3 (Fig. 5c). 253 

 254 

4. Discussion 255 

 The Marginal R2 and Conditional R2 values for the height growth model were determined 256 

to be lower than the diameter growth model, thus indicating low model accuracy. In 257 

general, tree height measurement is susceptible to error (Larjavaara and Muller-Landau 258 

2013). At our study site, the instrument used to measure tree height was changed from 259 

Blume-Leise to Vertex after 2000, and this may have introduced measurement error 260 

(Villasante and Fernandez 2014). In addition, only a proportion of the trees were explicitly 261 

measured at our study site; heights for the unmeasured trees were estimated using the 262 

relationship between DBH and tree height. The potential errors involved in height 263 

estimation may have affected accuracy of the height growth model in this study. On the 264 

other hand, mean height, DBH, and volume were predicted by our model with moderate 265 

accuracy, and diameter distribution up to 30 years of age was predicted well. Our results 266 

indicate that individual-level distance-independent models may adequately predict stand 267 

yield for a limited time and that such models can be useful in a yield prediction system. 268 

A characteristic of Japanese cedar is that it has very straight stems and stands are usually 269 

planted simultaneously, meaning that tree size is expected to be uniform. Therefore, our 270 

relatively simple models were well suited to growth predictions for Japanese cedar. 271 

Most of the yield prediction models popular in Japan were built upon a stand-level framework 272 

(Konohira 1995; Nakajima et al. 2010). Because the models were developed for major 273 
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species in each region, the system has shown practical application for local-level forest 274 

planning. However, the system only provides yield growth under standard treatment and 275 

cannot specifically select trees that should be removed for a thinning treatment; therefore, 276 

the system is not suitable for selecting target trees for a thinning exercise and is 277 

insufficient for evaluating tree growth under different treatment strategies. In this study, 278 

we extended individual-level yield prediction to address the problems of conventional 279 

yield prediction through the ability to select trees to be removed for a thinning treatment 280 

and to adequately express residual tree growth. Our model is ideal in a supporting role to 281 

improve forest management plans. Moreover, our model used distance-independent 282 

competition indices to express competition in a stand. These indices are more easily 283 

calculated than distance-dependent competition indices as they do not require location 284 

information data from a stand (Rivas et al. 2005). However, the distance-independent 285 

competition index has a limitation; Hasenauer (2006) implied that if the plot size increases, 286 

predictions may diverge from the real situation. Consequently, it would be advantageous 287 

to create models that incorporate distance-dependent competition indices. This would 288 

require trees’ coordinate information, the collection of which, to date, has been costly in 289 

labor and time. Recently, terrestrial laser scanning had been employed to measure forest 290 

structure (Nishizono et al. 2020; Suematsu et al. 2020). Results indicate that it might, in 291 

the future, be feasible to obtain spatial information such as individual tree sizes and 292 

positions using this technique. It is relatively easy to calculate the distance-dependent 293 

competition index, and this permits realistic expression of tree growth. In a future study, 294 

we plan to incorporate both distance-dependent and distance-independent competition 295 

indices to flexibly predict yield growth under various forest management scenarios. We 296 

also aim to incorporate taper curves into our model for accurate prediction of timber 297 
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production (Seppänen and Mäkinen 2020), as this could provide useful yield prediction 298 

data. 299 

There are some limitations with individual-level models. Our models were developed 300 

based on the data of pure Japanese cedar plantations. Therefore, the models might not 301 

suitable for the mixed or un-even aged Japanese cedar plantation. In this study, prediction 302 

accuracy of mean values in Plot 1 was lower than that in Plot 2. One possible reason is 303 

that the standard deviation in Plot 1 was larger than in Plot 2. If the dispersion of data 304 

were large, the model may not be able to provide accurate predictions. The RMSE values 305 

increased with increasing tree age in both plots. Bias also showed that the values were 306 

not constant. The RMSE and bias values were high compared with other previous studies 307 

that was constructed yield prediction system for other species (e.g. Weiskittel et al. 2016; 308 

Scolforo et al. 2019); however, our models sufficiently predicted for short- and medium-309 

term tree growth. In general, the individual-level model produces error propagation when 310 

tree growth predictions are made as a time series. Moreover, data for outliers (extremely 311 

large or small trees) might be difficult to predict well. To better model long-term 312 

individual tree growth, we need to incorporate data other than just initial values.  313 

We validated our models by adapting the test data, which had been collected as a 314 

consequence of normal management. Recently, conifer plantations have matured in Japan, 315 

and it is now necessary to consider management of old trees (Miyamoto 2015). Moreover, 316 

we need to reduce management costs to improve revenue for forest owners (Fukumoto et 317 

al. 2017, 2020b, 2021; Sakai et al. 2019). While promising, our models do not yet address 318 

some of the problems currently experienced in the Japanese forestry industry, and further 319 

refinement is required to adapt the yield growth models for non-standard treatments. On 320 

the other hand, our models have the advantage of relative simplicity; to develop 321 
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individual-level models would require huge datasets to estimate model parameters. This 322 

is the most important issue in yield prediction at individual level, since it is very 323 

challenging to collect long-term individual tree growth data. In this study, we examined 324 

yield prediction in limited areas and species; a useful next step would be to re-estimate 325 

the parameters to adapt the model for other regions and species. Parameter estimation 326 

calculated from minimal data would be a valuable topic for future study.  327 

 328 

5. Conclusion 329 

 This study examined distance-independent individual-level yield prediction for 330 

Japanese cedar plantations in the Shikoku region, western Japan. We developed models 331 

employing three parameters, that is, height, DBH, and mortality, to predict yield. Results 332 

showed that our models predicted actual mean values for height, DBH, volume, and 333 

diameter distribution well, suggesting that individual-level models might be sufficient for 334 

yield prediction. One limitation was error propagation over extended time spans. Thus, it 335 

is useful to conduct actual measurements at some point in the forest development stage, 336 

and use the measurements as initial values for short- or medium-term predictions. Our 337 

intention is to improve the models for practical application for an individual-based yield 338 

production system in Japanese forestry, as such a tool would make a significant 339 

contribution to sustainable timber supply and forest management in Japan. 340 
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Table 1. Summary of study sites at first and last measurement period 527 

Site Plot Area  
(ha) 

First measurement         Last measurement       

SI* 
Cumulative 
Thinning 

rate Age  
(years) 

Density  
(trees/ha) 

Mean 
height 

(m) 

Mean 
DBH* 
(cm) 

Sr*  
(%) 

 Age  
(years) 

Density  
(trees/ha) 

Mean 
height 

(m) 

Mean 
DBH* 
(cm) 

Sr*  
(%) 

A Asagihara 1 0.227 12 1,308 3.6 3.9 78.2  60 1,185 15.3 19.9 19.0 15.7 - 
  2 0.200 12 1,340 3.2 3.2 86.9  60 1,260 14.5 18.4 19.4 15.6 - 
  3 0.116 12 5,147 3.4 3.6 42.1  60 4,509 12.6 13.1 11.8 14.8 - 
  4 0.124 12 4,806 3.8 4.0 38.3  60 3,750 14.5 14.7 11.3 19.1 - 

B Nishimata- 
higashimata 5 0.203 10 3,286 7.4 9.6 23.5  66 1,187 26.9 31.9 10.8 23.5 0.20 

  6 0.078 11 2,782 7.8 10.5 24.4  67 2,282 24.3 27.0 8.6 24.9 - 

C Nakanokawa- 
yama 7 0.089 28 2,337 17.4 22.0 11.9  54 1,663 24.5 29.4 10.0 22.6 - 

  8 0.043 28 2,581 15.2 17.7 13.0  54 1,605 23.2 26.2 10.8 20.9 0.18 
  9 0.055 28 3,364 17.5 18.2 9.9  54 1,982 26.2 28.0 8.6 23.3 - 
  10 0.035 27 4,943 13.1 13.5 10.8  53 1,314 21.8 26.0 12.7 20.1 0.69 
  11 0.036 27 3,306 12.3 14.8 14.1  53 1,750 21.0 23.2 11.4 18.3 0.32 
  12 0.036 27 5,250 10.3 11.0 13.4  53 2,833 18.2 20.7 10.3 16.9 - 

D Kudarukawa- 
yama 13 0.116 14 2,509 11.3 14.5 17.7  61 707 33.3 40.8 11.3 27.5 0.44 

  14 0.123 14 2,236 10.4 13.9 20.3  61 780 33.6 41.0 10.7 27.7 0.28 
  15 0.106 14 2,189 11.3 15.6 18.9  61 868 33.4 40.6 10.2 27.4 0.26 

    16 0.113 14 2,469 10.2 14.1 19.8   61 1,416 29.5 31.8 9.0 26.6 - 

*DBH is diameter at breast height, and Sr is relative spacing index. SI is site index, which is calculated dominant height at 40 years old. Cumulative 528 

thinning rate (cumulative thinning volume/gross yield) is calculated between first and last measurements. 529 
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Table 2. Summary of the test data in Plot 1 and Plot 2 collected at Ichinotani-yama. Values in parentheses are standard deviations 530 

    Age Area 
(ha) SI 

    12 17 22 30 36 41 46 56 62 65 

(a) Plot 1 Mean height (m) 7.6 9.9 11.7 13.7 17.4 19.3 20.6 21.6 22.1 22.5 0.109 22.1 
  (2.2) (2.6) (2.9) (3.6) (2.9) (2.8) (3.0) (3.2) (3.4) (3.6)   

 Mean DBH (cm) 9.9 13.0 15.3 17.3 21.2 25.8 27.2 30.3 31.6 33.1   

  (3.5) (4.7) (5.7) (7.1) (6.2) (6.2) (6.8) (7.8) (8.5) (9.5)   

 Mean volume (m3) 0.044 0.091 0.143 0.212 0.334 0.505 0.591 0.759 0.842 0.945   

  (0.0) (0.1) (0.1) (0.2) (0.2) (0.3) (0.3) (0.4) (0.5) (0.6)   

 Stand density (trees ha-1) 1844 1844 1844 1477 835 826 826 826 807 807   

              

(b) Plot 2 Mean height (m) 6.0 8.1 9.6 10.9 13.4 15.1 16.0 17.4 18.4 19.3 0.109 18.0 
  (1.9) (2.1) (2.2) (2.7) (2.4) (2.5) (2.7) (2.7) (2.7) (3.0)   

 Mean DBH (cm) 7.7 10.5 12.6 13.9 16.6 20.7 21.9 25.5 27.1 28.7   

  (3.0) (3.8) (4.4) (5.3) (5.2) (5.8) (6.2) (7.4) (8.3) (8.5)   

 Mean volume (m3) 0.023 0.051 0.081 0.114 0.174 0.280 0.329 0.468 0.552 0.639   

  (0.0) (0.0) (0.1) (0.1) (0.1) (0.2) (0.2) (0.3) (0.4) (0.4)   

  Stand density (trees ha-1) 2147 2147 2147 1771 881 872 872 872 853 853     

531 
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Table 3. Parameters for the volume equation for Japanese cedar trees in Tosa regions 532 

according to Hosoda et al. (2010). 533 

Diameter class (cm) Intercept H (m) DBH2 (m) H*DBH2 

DBH <11 −0.00018 0.00006901 0.58810351 0.38337273 

DBH <21 −0.01266 0.00177071 1.04476089 0.2964403 

DBH <31 −0.03328 0.00442833 1.42509179 0.25603657 

31 ≤ DBH −0.51335 0.02464082 4.65164113 0.11705915 
 534 

  535 
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Table 4. Parameter estimation for the height and diameter growth models, and survival model  536 

    Parameter Description Estimate 

(1) Height growth model a0 Intercept -2.582 
  a1 Age -0.002 
  a2 Height 0.002 
  a3 Height＾2 -0.001 
  a4 BAL -0.078 
  a5 SI 0.089 

(2) Diameter growth model b0 Intercept -1.971 
  b1 Age -0.051 
  b2 DBH 0.126 

  b3 DBH＾2 -0.001 

  b4 Sr 0.020 
(3) Survival model c0 Intercept 4.512 

  c1 DBH 0.008 
  c2 Sr 0.054 
  c3 SI -0.159 

    c4 DBH＊Sr 0.019 

 537 

 538 
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Table 5. Evaluation for the height, diameter and survival model. 539 

  540 
  Marginal R2 Conditional R2 RMSE AB AUC 

(1) Height growth model 0.23 0.25 0.2048 0.057 - 
(2) Diameter growth model 0.52 0.59 0.2050 0.048 - 
(3) Survival model - - - - 0.84 
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Figure captions 541 

Figure1. Locations of the study site; (A) Asagihara, (B) Nishimata-higashimata, (C) 542 

Nakanokawa-yama, (D) Kudarukawa-yama, (T) Ichinotani-yama. The land area was 543 

provided by the Digital National Land Information (https://nlftp.mlit.go.jp/ksj/). The map 544 

projection and coordinate systems were used JGD2000 and UTM zone 53N, respectively.  545 

Figure 2. Relationship between predicted and observed mean height, DBH, stand density, 546 

tree volume, and stand volume in test site (a) Plot 1 and (b) Plot 2 547 

Figure 3 (a). Relationship between predicted and observed diameter distribution in Plot 548 

1. The bars indicate actual values, the blue lines indicate predicted values 549 

Figure 3 (b). The relationship between predicted and observed diameter distribution in 550 

Plot 2. The bars indicate actual values, the blue lines indicate predicted values 551 

Figure 4. RMSE trend in Plot 1 and Plot 2 for (a) Height, (b) DBH, and (c) Volume 552 

Figure 5. Bias trend in Plot 1 and Plot 2 for (a) Height, (b) DBH, and (c) Volume. Grey 553 

line indicates y= 0 554 

  555 
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Figure 3 (b).  563 
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