1	Effects of dispersed and aggregated retention-cuttings and differently sized clear-cuttings in
2	conifer plantations on necrophagous silphid and dung beetle assemblages
3	
4	
5	Akira Ueda ^{1,2*} , Hiroki Itô ² , Shigeho Sato ^{2.3}
6	¹ Kyushu Research Center, Forestry and Forest Products Research Institute (FFPRI), Kurokami 4-11-
7	16, Chuo-ku, Kumamoto 860-0862, Japan
8	² Hokkaido Research Center, FFPRI, Hitsujigaoka 7, Toyohira-ku, Sapporo 062-8516, Japan
9	³ Shikoku Research Center, FFPRI, Asakura Nishimachi 2-915, Kochi 780-8077, Japan
10	
11	*Author for correspondence (e-mail: akira@ffpri affrc go.jp; fax: +81-11-851-4131)
12	
13	Abstract
14	Retention forestry and small-sized clear-cuttings are thought to partially mitigate the impacts
15	of logging. To evaluate the impacts of these two harvesting methods, a variety of logging operations
16	were conducted in mature Sakhalin fir plantation forests in Hokkaido, northern Japan. The stands were
17	logged with the following approaches: dispersed retention of naturally regenerated broad-leaved trees
18	in large (100 trees/ha), medium (50), or small (10) amounts; 60×60 m aggregated retention;

19	quadrilateral small-sized (ca 1-ha) clear-cutting; and whole clear-cutting. We collected necrophagous
20	silphid and dung beetles from these stands and from unharvested natural broad-leaved forests and
21	plantation forests using carrion-baited pitfall traps. All logging operations clearly affected the beetle
22	assemblages. The 0.36 ha unharvested forest patches under aggregated retention did not act as refugia
23	for forest species because their assemblages were almost identical to those outside the forest patches
24	and in the whole clear-cuts. However, the total abundance of forest species and, specifically, the
25	abundances of two dominant forest species were significantly and positively related to the trunk basal
26	area of retained trees in the dispersed retention sites. The total abundance of forest species was
27	significantly higher in the small clear-cuts than in the whole clear-cuts. A dominant open-land species
28	was abundant in the harvested areas irrespective of the type of logging operation. Thus, we concluded
29	that dispersed retention and small-sized clear-cuttings were beneficial harvesting methods for the
30	beetle conservation because they conserved forest species compared to whole clear-cuttings and
31	preserved the habitats of open-land species as well as whole clear-cuttings.
32	Implications for insect conservation: Our results indicated that large areas of unharvested forest
33	patches are needed to conserve the habitat of forest necrophagous silphid and dung beetles, most
34	species of which are adept at flying. Our results also indicated that the higher density of retained trees
35	in dispersed retention forestry and the smaller areas of clear-cuttings were better for conserving forest
36	species. Our findings provide useful information for selecting methods and designs of logging

37 practices for species protection of flying insects in logged areas.

38

39	Keywords
40	Silphidae, coprophagous group of Scarabaeoidea, retention forestry, green-tree retention, group
41	retention, necrophagous beetle
42	
43	Introduction
44	In Japan, conifer plantations that were largely established from the 1960s to 1980s mature and
45	become ready for harvesting. As such, the amount of domestic wood production started increasing in
46	2002 and is expected to increase more in the future (Forestry Agency of Japan 2018). In cases of tree
47	felling, standard clear-cuttings may have some impacts on forest ecosystems by causing increases in
48	landslides and debris flows and decreases in forest species (Imaizumi et al. 2008; Imaizumi and Sidle
49	2012; Aiura et al. 1996; Pawson et al. 2006). Retention forestry (i.e., a measure to retain unharvested
50	live and/or dead trees at harvest time) has been performed in several parts of European, North
51	American, Tasmanian, and Patagonian forests, and a variety of studies on biodiversity have been
52	undertaken there (Gutafsson et al. 2012; Lindenmayer et al. 2012; Mori and Kitagawa 2014; Ozaki et
53	al. 2018). Rosenvald and Lõhmus (2008) demonstrated that the species richness and abundances of
54	birds and ectomycorrhizal fungi were larger in retention-cuts than in clear-cuts, but those of herbs,

55	arthropods, and small mammals did not significantly differ between retention-cuts and clear-cuts.
56	Fedrowitz et al. (2014) showed that the species richness and abundances of both forest and open-land
57	species of most organism groups in the stands under retention forestry were intermediate between
58	those of unharvested forests and clear-cut areas and concluded that retention forestry decreased the
59	negative impacts of tree felling and functioned to conserve open-land species.
60	However, these practices have been examined only in natural forests, and no studies on
61	retention forestry have been performed in plantation forests (Ozaki et al. 2018; Yamaura et al. 2018).
62	Moreover, retention forestry with large experimental study sites has never been undertaken in Asia
63	(Ozaki et al. 2018; Yamaura et al 2018). Thus, as the first attempt at retention forestry in both
64	plantation forests and Asia, the sites of this study, "the Retention Experiment for plantation FoREstry
65	in Sorachi, Hokkaido (REFRESH)", were initiated in 2013 in conifer plantation forests in Hokkaido,
66	Northern Japan (Akashi et al 2017; Ozaki et al. 2018; Yamaura et al 2018).
67	There are two approaches to retention forestry. Dispersed retention distributes the retained trees
68	through the whole harvested stand. Aggregated (group) retention distributes unharvested areas in a
69	harvested stand. Aggregated retention aims at unharvested areas functioning as refugia of forest
70	species called 'lifeboat' (Matveinen-Huju et al. 2006). Aubry et al. (2009) demonstrated that the
71	diversities of most organism groups did not significantly differ between dispersed and aggregated
72	retentions in North America. Baker et al. (2009) showed that aggregated retention benefited ground-

active beetles compared to dispersed retention in Tasmania. In the REFRESH, both dispersed and
aggregated retentions were installed to compare their advantages (Akashi et al 2017; Ozaki et al. 2018;
Yamaura et al 2018).

76 As another measure to mitigate logging impacts, the effects of small clear-cuttings on 77 biodiversity have also been studied. Koivula (2002) showed that the abundances of habitat generalists 78 of carabid beetles were low in small clear-cut areas compared to large clear-cut areas as well as 79 unharvested forests. Ito et al. (2006) showed that strip-cutting (a series of narrow clear-cuts) was more 80 effective in conserving plant species of natural forests than clear-cutting. In the REFRESH, both small-81 sized clear-cuttings and whole stand clear-cuttings were installed to determine whether small-sized 82 clear-cuttings mitigated the logging impacts compared to standard clear-cuttings (Akashi et al 2017; 83 Ozaki et al. 2018; Yamaura et al 2018). Currently, a variety of investigations, including not only 84 biodiversity but also the commercial values of timber and river water conditions, have been performed 85 in and around the stands of the REFRESH site (Yamaura et al 2018). 86 Necrophagous silphid beetles (Silphidae) and dung beetles (coprophagous group of 87 Scarabaeoidea: Troidae, Geotrupidae, and a part of Scarabaeidae (Scarabaeinae) in this study) clearly

- respond to forest habitat quality (Ohkawara et al. 1998; Gibbs and Stanton 2001; Davis et al. 2001)
 and are treated as useful indicators of forest conditions such as tree species, forest age, and tree density
- 90 (Suzuki 2005; Gardner et al. 2008; Nichols and Gardner 2011). It is also known that studies of

91	necrophagous silphid and dung beetles are generally low cost because of the large collection of beetles
92	by using carrion-baited pitfall traps. Setting only one trap per stand enables the collection of all
93	dominant species in the stand, and the assemblage data are sufficient to compare stands because the
94	trap catches are almost identical in a stand (Nichols and Gardner 2011; Ueda 2015).
95	Necrophagous silphid and dung beetles perform important ecological functions, such as
96	promoting the rapid decomposition of carcasses and influencing nutrient cycling, bioturbation, and
97	plant growth enhancement (Barton et al. 2013). Amézqutta and Favila (2011) showed that a low
98	biomass of necrophagous dung beetles led to a reduced rate of carrion removal. Moreover, beetles also
99	exhibit ecological functions to control necrophagous flies because the flies are in the same food guild
100	as the beetles (Wilson 1983). Gibbs and Stanton (2001) showed that a low abundance of silphid beetles
101	increased the abundance of muscoid flies.
102	As mentioned above, necrophagous silphid and dung beetles are highly sensitive indicators,
103	low cost for study materials, and have important ecological functions. However, no studies on
104	necrophagous silphid and dung beetle assemblages associated with retention forestry and small clear-
105	cuttings have been performed. The purpose of this study was to evaluate the impact of logging
106	practices in conifer plantation forests, including logging for dispersed retention, aggregated retention,
107	small-sized clear-cutting, and whole clear-cutting, on necrophagous silphid and dung beetle
108	assemblages in the REFRESH. We especially focused on whether logging for retention forestry and

109	small-sized clear-cutting mitigated the impacts on beetle diversity compared to those of whole clear-
110	cutting. For the evaluation, 1) we addressed the dominant beetle species to forest species and open-
111	land species. 2) We tested the significance of relationships between the trunk basal area and the beetle
112	assemblages in the dispersed retentions to understand the effects of dispersed retention. 3) We showed
113	the beetle assemblages inside and outside the unharvested forest patch in the aggregated retentions in
114	comparison with the unharvested stands and the whole clear-cuts to estimate the effects of aggregated
115	retention. 4) We compared the beetle assemblages between the small-sized clear-cuts and the whole
116	clear-cuts to understand the effects of small-sized clear-cuttings. Then, 5) we discussed whether
117	retention forestry and small-sized clear-cuttings mitigate the logging impacts on beetle diversity.
118	
119	Materials and Methods
120	Study site: This study was conducted at the REFRESH project sites located on the east and south
121	slopes of Mt. Irumukeppu (864 m asl.), Sorachi District, Central Hokkaido, Northern Japan
122	(43°34'37"-39'26"N, 142°05'27"-09'33"E) (Akashi et al 2017; Yamaura et al 2018). The study sites

123 were 3 natural broad-leaved tree forest stands (NC) dominated by linden (*Tilia japonica*), mono maple

124 (Acer pictum), and Mongolian oak (Quercus crispula) and 20 mature Sakhalin fir, Abies sachalinensis,

125 plantation forest stands that were 56 years old on average (range 48-72 years) in 2014 (Akashi et al

126 2017; Yamaura et al 2018). The stands had edge-to-edge distances of more than 150 m from each other

127	(Akashi et al 2017; Yamaura et al 2018). The first set of 5 types of logging operations was conducted
128	in spring-summer in 2014 at the different plantation stands, and the second and third sets of the 5 types
129	of logging operations were conducted in 2015 and 2016, respectively (5 types \times 3 replicates = 15
130	plantation stands) (Table 1). The 5 types of logging operations were as follows: 1) large-amount
131	dispersed retention (SL): ca. one hundred broad-leaved trees that naturally regenerated in the
132	plantation per ha were retained, 2) middle-amount dispersed retention (SM): ca. fifty broad-leaved
133	trees per ha were retained, 3) small-amount dispersed retention (SS): ca. ten broad-leaved trees per ha
134	were retained, 4) aggregated retention (GR): a 0.36 ha (60×60 m) unharvested forest patch was
135	retained at the centre of the stand, and 5) whole clear-cutting (CC): no trees were retained (Table 1).
136	Three and two quadrilateral small-sized (ca 1-ha) clear-cuttings (SC) were conducted in another 9.24
137	and 7.83 ha plantation stands in 2015 and 2016, respectively (5 replicates) (Table 1). The small clear-
138	cuts had edge-to-edge distances of more than 10 m from each other. Sakhalin fir saplings were planted
139	in spring the year following logging operations in the harvested areas. Three residual stands of the 20
140	fir plantations were used as unharvested controls (PC) (Table 1).
141	Field trapping: Two baited pitfall traps were set more than 50 m inside from the stand edge at each
142	site except for the aggregated retention stands (GR) and the small clear-cutting sites (SC). These two
143	traps were set more than 50 m apart from each other to prevent trap interference (Larsen and Forsyth
144	2005). In the GR stand, one trap was set near the centre of the 0.36 ha unharvested patch (GRR), and

145	another 2 traps were set in the clear-cut area (GRC) more than 50 m apart from the edge of the
146	unharvested patch (Table 1). At the SC site, one trap was set near the centre (Table 1). Each trap was
147	set on 13-15 June 2017 (Table 1, Fig. 1). The trap frames were the same as those in Ueda et al. (2016)
148	and Ueda (2020); a 20-cm-long grey vinyl chloride pipe was driven into the ground with the opening
149	level with the ground surface, a plastic cup (95 mm in open diameter and 170-mm high) with four 2-
150	mm-diameter holes for drainage on the side (50 mm from the top) was used as the trap and inserted
151	into the pipe; the trap contained 100 ml propylene glycol and a small plastic cup (42 mm in open
152	diameter and 35 mm high) were fixed with steel wire on its upper lip. Another small plastic cup
153	containing 15 g meat of mackerel (Scomber spp.) with a perforated lid (having 25 holes, each 1 mm
154	in diameter) was inserted into the suspended cup, and a steel rack (405×250 mm, 30-mm high) was
155	laid over the trap to make slits for the beetles to enter. The steel rack was weighed down with a concrete
156	block (390×190 mm, 120-mm high, 11.3 kg) to prevent rainwater and animals from disturbing the
157	traps. Beetle collection and replacements of propylene glycol and bait were performed on 10-13 July,
158	8-10 August, and 1-4 September. Trapping was finished on 2-3 October (Table 1). The trapping period
159	was 110 or 111 days in total for each trap (Table 1).
160	Investigation of site conditions: We used modified data on tree density, broad-leaved tree density,
161	basal area (BA) of tree trunks, and BA of broad-leaved trees measured by Akashi et al. (2017), who

162 measured the diameters at breast height (DBH) of tree trunks and identified tree species with DBHs

163	above 5 cm. Since heavy wind throw occurred at the unharvested forest patch in the aggregated
164	retention site of the third set (GRR3) before this study, we measured the DBH of trees above 5 cm in
165	DBH in the 10×10 m plot on the trapping site on 28 August 2017. We determined the rate of vegetation
166	ground cover in circles with a diameter of approximately 2 m surrounding each trap site on 28-31
167	August 2017. Degrees of ground cover were categorized as follows: 0: no vegetation, 0.5: covered less
168	than approximately 1%, 1: from 1 to 10%, 2: from 10 to 25%, 3: from 25 to 50%, 4: from 50 to 75%,
169	and 5: more than 75% (Braun-Blanquet 1964). Data of site conditions are shown in Table 1.
170	Identification and storage of specimens and calculation of beetle biomass: All captured beetles
171	were dried on absorbent cotton and identified using a binocular microscope (Nikon SMZ 1500). We
172	referred to Kurosawa (1985) and Kawai et al. (2005) for identification. All beetles are stored at the
173	Hokkaido Research Center, Forestry and Forest Products Research Institute. Since it is known that the
174	biomass of necrophagous dung beetles is consistent with the extent of carrion removal (Amézquita
175	and Favila 2011), we calculated the total biomass of trapped beetles to estimate their ecological
176	functions. To obtain biomass data for the beetles collected in each trap, beetles of each species were
177	dried for three days at 70°C and 4 additional days at 80°C. Almost all specimens (i.e., unbroken
178	specimens) were weighed for 9 minor species for which fewer than 17 individuals were collected
179	(Appendix table 1). For 7 dominant species for which more than 164 individuals were collected
180	(Appendix table 1), we weighed the beetles in two ways along with the numbers of beetles collected

181	in a collection period. If more than 234 individuals in a collection period were collected, we randomly
182	selected more than 100 specimens (102-137 specimens) in every collection period and weighed them.
183	If fewer than 234 specimens (actually fewer than 91 individuals (Appendix table 1)) were collected in
184	a collection period, almost all specimens were weighed. The biomass of minor species collected per
185	trap was calculated from the products of the number of individuals collected and the mean dry weight
186	of all seasons. The biomass of dominant species collected per trap was calculated from the accumulated
187	weight of each collection period in considering the seasonal changes in beetle body weights. The
188	weight of each collection period was calculated from the products of the numbers of individuals
189	collected in the respective collection periods and the mean dry weights in the periods.
190	Data analysis: To collect data from one site, we applied the mean values of beetle capture data where
191	two traps were set. To understand whether retention forestry and small clear-cutting mitigate the
192	logging impacts, we need to evaluate the abundances divided into forest species and open-land species.
193	However, there were no adequate references for the habitat preferences of necrophagous silphid and
194	dung beetles in Japan. Then, we decided the habitat preferences of the dominant species in this study
195	from the collection data of whole harvested stands and unharvested stands. It is known that some
196	species prefer dense or sparse vegetation ground cover irrespective of the different light environments,
197	such as in forests or grasslands (Ueda and Sato 2010). We illustrated the relationships among the trunk

200

species apparently abundant in unharvested stands to 'forest species' and those abundant in harvested stands to 'open-land species'.

201 To illustrate the differences in beetle assemblages among sites, nonmetric multidimensional 202 scaling (NMS) was used for the ordination of the species composition at each site to analyse the 203 similarities among the site categories. Sorensen distance was used for the analysis. First, we analysed 204 6 axes and 10 runs using the autopilot system of the software to determine the appropriate dimension 205 numbers. Next, we analysed the recommended numbers of axes and 1 run. Multivariate response 206 permutation procedures (MRPPs) were applied to evaluate the effects of the categories on beetle 207 assemblages. In this analysis, when the chance-corrected within-group agreement (A) is unity, all 208assemblages in the respective groups are identical, and if A is larger than 0.3, the identical level is 209 fairly high, and the grouping is sufficiently reliable (McCune and Grace 2002). PC-ORD ver. 6.07 210 (MJM Software Design 2011) was used for these analyses. 211 To understand the effects of dispersed retention, we analysed the relationships between retention 212 revels and beetle assemblages using data from dispersed retentions and whole clear-cuts. We used the 213 trunk basal area as the explanatory variable and treated the year of harvest as the explanatory variable; 214 the year of harvest could not be treated as a random effect because there were only three levels in this 215 data set. We used the total abundances of all species, forest species, and each dominant species, species 216 richness, and biomass for each site as objective variables. A linear model (LM) was used for biomass.

217	A generalized linear model (GLM) with negative binomial error structures linked with the logarithmic
218	function was used for the other variables. We used the number of valid traps of each site as an offset
219	term in the analyses.
220	To understand the effects of aggregated retention, we illustrated the total abundances of all
221	species and forest species, species richness, and biomass along with the trunk basal area for the sites
222	inside and outside of the 0.36 ha unharvested patch, in the unharvested plantations, and in the whole
223	clear-cuts. We could not perform any statistical analyses for the effects of aggregated retention because
224	of the short numbers of replicates. Then, we estimated the effects of aggregated retention from the
225	figures.
226	To understand the effects of small-sized clear-cuttings, we compared the beetle assemblage data
227	between the small clear-cuts and the whole clear-cuts. We used site categories and the year of harvest
228	as explanatory variables. The objective variables, the models used, and the offset term were the same
229	as the analyses for dispersed retention.
230	For these analyses, the glm.nb function of the MASS package (Venables and Ripley 2002) and
231	the lm function were used in R 4.1.1 (R Core Team 2021).
232	
233	Results
234	Since one of the two trap sets was broken by animals at SM3 and GRC2, data from these traps

235	were deleted from analyses (Table 1). In total, 16 species and 21,579 individuals of necrophagous
236	silphid and dung beetle were collected (Appendix tables 1 and 2). The most abundant species,
237	Onthophagus ater, was addressed to the open-land species because of the apparent low collections in
238	the unharvested stands (Fig. 2a). Nicrophorus quadripunctatus, Geotrupes laevistriatus, Nicrophorus
239	investigator, and Nicrophorus tenipes were addressed to the forest species because of the apparent
240	high collections in the unharvested stands (Fig. 2b, d, e, and g). In these forest species, G. laevistriatus
241	was especially abundant in the natural brad-leaved forests (Fig. 2d). No species showed a clear
242	response to the levels of vegetation ground cover (Fig. 2).
243	The NMS analysis of the beetle assemblages recommended a two-dimensional solution, and
244	the value of final stress (= 8.3%) from the analysis using 2 axes and 1 run indicated that the result was
245	sufficiently reliable. The MRPP results (A = 0.224, $P = 0.0005$) indicated that categorization was
246	reliable and that categories were moderately separated overall. The coordinates were largely separated
247	into unharvested stands and harvested stands along axis 1, which had a high contribution rate (Fig. 3).
248	In the analyses of the effects of dispersed retention, the total abundance, total biomass, and total
249	abundance of forest species were significantly and positively related to trunk basal area (Table 2, Fig
250	4). The abundances of two forest species, N. quadripunctutus and G. laevistriatus, were also
251	significantly and positively related to trunk basal area (Table 2; additionally, refer to the circle sizes
252	of the harvested stands in Fig. 2b and d). The total abundance of forest species and the abundance of

253	<i>N. quadripunctatus</i> were significantly and negatively related to both 2015 and 2016, but the p values
254	for the years were larger than those for the trunk basal area (Table 2). Species richness and the
255	abundances of an open-land species, O. ater, and of two forest species, N. investigator and N. tenuipes,
256	did not significantly relate to any variables (Table 2, Additionally, refer the circle sizes of the harvested
257	stands in Fig. 2a, e and g).
258	In the figures for the effects of aggregated retention, total abundance did not clearly differ
259	among site categories (Fig. 5a). Species richness, total biomass, and total abundance of forest species
260	were high at the sites in the unharvested plantations but did not differ among the sites in and outside
261	the unharvested patch and the sites in the whole clear-cuts (Fig. 5b, c, and d). The abundance of an
262	open-land species, O. ater, did not differ among sites except for the unharvested plantation sites where
263	this species had low abundances at two of the three sites (Fig 5e).
264	In the analyses of the effects of small-sized clear-cutting, the total abundance of forest species
265	was significantly and negatively related to whole clear-cutting (Table 3, Fig 6). No significant
266	relationships occurred in the analyses for the effects of small-sized clear-cutting other than this (Table
267	3).
268	

270 Mitigation of logging impacts by retention forestry

269

Discussion

271	Different coordinates of the NMS analysis between unharvested stands and harvested stands
272	indicated that logging operations strongly affected necrophagous silphid and dung beetle assemblages.
273	This was supported by the MRPP results, which showed relatively identical beetle assemblages in
274	each site category and significant differences among the site categories. However, the results on the
275	forest species in this study indicated that dispersed retention mitigated the logging impacts for the
276	forest species. This was identical to the result on the carabid beetle assemblages conducted at the same
277	sites as this study (Yamanaka et al. 2021) and the results on most organism groups (Fedrowitz et al.
278	2014). The results for the open-land species in this study indicated that dispersed retention did not
279	affect its abundance. This was not identical to the result on the carabid beetle assemblages conducted
280	at the same sites as this study (Yamanaka et al. 2021) and the results on most organism groups
281	(Fedrowitz et al. 2014). The levels of dispersed retention in this study might have been too low to
282	reveal a decrease in the open-land species. Further study needs to be conducted at higher levels of
283	dispersed retention to clarify this. The increased abundances of forest species and no increase or
284	decrease in the open-land species along the trunk basal area resulted in significant increases in the
285	total abundance of all species and the total biomass in this study. The significantly lower abundances
286	of the total forest species and N. quadripunctatus at the site logged in both 2015 and 2016 than in 2014
287	is notable because this result suggests the rapid recovery of the forest species in the harvested area.
288	Periods needed for recovering forest species depend on species or groups (Magura et al. 2015). The

continued study at the same sites of this study will clarify whether the forest species increase in the

- 290 harvested area year by year.
- 291 The 0.36 ha unharvested forest patch in the aggregated retention was thought not to act as a 292 lifeboat for forest species in this study because the assemblages were almost identical to those outside 293 the forest patch and those in the whole clear-cuts. On carabid beetles, the 0.36 ha unharvested forest 294 patch clearly acted as a life-boat for forest species (Yamanaka et al. 2021). Similar results were found 295 on carabid beetles in other studies (Baker et al. 2009; Work et al. 2010; Baker et al. 2016; Wu et al. 296 2019). These results largely differed from our results on necrophagous silphid and dung beetle 297 assemblages. Three of the four forest species in this study belong to the genus Nicrophorus, which 298 flies well and needs a large foraging area in which search for patchy distributed resources such as the 299 dead bodies of small vertebrates (Creighton and Schnell 1988; Attisano and Kilner 2015). The 300 unharvested patch was too small to maintain the population of forest Nicrophorus, and its surrounding 301 clear-cut area limited the migration of the beetles lured by the bait odour of the trap to reach the 302 unharvested patch. In contrast, many forest dowelling species or individuals of carabid beetles are 303 brachypterous, which leads to their populations remaining in relatively small habitats (Boer 1970; 304 Koivula et al. 2004). Another forest species in this study, G. laevistriatus, is known to be flightless in 305 Hokkaido (Suzuki et al. 2001), but this species was originally present at low abundance in conifer 306 plantations. Since the open-land species O. ater were abundant in the unharvested forest patches as

307 well as outside the patches and the whole clear-cuts, the unharvested forest patch may have not 308 influenced this species. The same abundances of open-land species between in- and outside the 309 unharvested forest patches were also observed on carabid beetles (Yamanaka et al. 2021).

310

Mitigation of logging impacts by small-sized clear-cutting

311 No difference in each forest species between small-sized clear-cuttings (ca 1-ha) and whole 312 clear-cuttings (> 6 ha) indicated that the small-sized clear-cuttings did not mitigate the logging impacts 313 on each species level. However, the significant difference in the total abundance of forest species 314 suggests that the small-sized clear-cuttings weakly mitigate the logging impacts for the forest species 315 in total. Ueda and Sato (2020) utilized the same traps used in this study and collected necrophagous 316 silphid and dung beetles at the centres of 30×30 m (0.09 ha) and 100×80 m (0.8 ha) clear-cuttings that 317 were surrounded by 40-year-old conifer plantations in Sapporo. They showed that the beetle 318 assemblage in the 0.09 ha area was the same as that of conifer plantations but that in the 0.8 ha area 319 was the same as that of the nearby grassland. Ueda (2020) also showed that the beetle assemblage on 320 the centre line of 20-m wide strip-cuts in a conifer plantation resembled those ca. 20-year-old natural 321 forests and differed from those in the other open-lands used as the log yards. Since the beetle 322 assemblages in the small clear-cuts in this study clearly differed from those in unharvested stands, the 323 size of the small clear-cut in this study was too large for almost all beetles of the forest species to be 324 lured to the centre of the unfavourable open-land. However, a few beetles of forest species reached 325 the centre and this made the small clear-cut in this study weakly mitigate the logging impacts 326 compared to the whole clear-cut. Since the open-land species O. ater did not differ in abundance 327 between the small clear-cuts and the whole clear-cuts, the small-sized clear-cuttings may have not 328 influenced this species. An open-land species in Kyushu, southern Japan, Onthophagus nitidus, was 329 more abundant in the centre line of 20 m-wide strip-cuts than in the other open-lands used as log yards 330 (Ueda 2020), suggesting that this open-land species prefers small open-lands to large ones. Further 331 studies in a variety of sizes of clear-cuttings will clarify the area-dependent effects on the logging 332 impacts for necrophagous silphid and dung beetle assemblages.

333

Habitat preferences of the beetles

334 N. quadripunctatus has been identified as a forest species in many studies (Katakura and 335 Fukuda 1974; Katakura and Ueno 1985; Katakura et al. 1985; Ohkawara et al. 1998; Nagano and 336 Suzuki 2003; Sugiura et al. 2012; Ueda 2016) as well as in this study. N. tenuipes was also identified 337 as a forest species in a study (Katakura and Fukuda 1974) as well as in this study. These two species 338 must be the forest species. Although N. investigator was identified as a forest species in this study, 339 Katakura and Fukuda (1974) showed that N. investigator was abundant in both forests and open-lands 340 in northern Hokkaido. Moreover, Wilhelm et al. (2001) showed that N. investigator preferred open-341 lands to forests on Great Island, Canada. N. investigator may prefer forests in warm regions such as 342 the sites of this study, central Hokkaido, and change to open-land habitat in cold weather. Conversely,

343	although O. ater was identified as an open-land species in this study, O. ater was abundant in both
344	forests and open-lands in Sapporo, lowland of central Hokkaido (Ueda and Sato 2020). Moreover, O.
345	ater was identified as a forest species in Kyushu, the southern island of Japan (Ueda 2016, 2020). O.
346	ater may also prefer forests in warm regions and change to open-land habitat in cold weather, similar
347	to the sites of this study. Further studies are needed to clarify the habitat preferences of these two
348	species.
349	It is known that the seasonal segregation of Nicrophorus species that overlap in body size occurs
350	(Wettlaufer et al. 2021). However, the typical forest species, N. quadripunctatus, decreases its activity
351	in summer in warm regions, although there are no competitive Nicrophorus species that overlap body
352	sizes with N. quadripunctatus (Nagano and Suzuki 2003; Ueda and Ohara 2018). This species may
353	control its activity to endure the hot season in warm regions without habitat change. G. laevistriatus
354	was remarkably abundant in the unharvested natural broad-leaved stands in this study, and this was
355	also observed in Sapporo, Hokkaido (Ueda and Sato 2020). These results suggest that this species is
356	an indicator species of natural broad-leaved forests in Hokkaido. However, the abundances of this
357	species were not different between natural broad-leaved forests and conifer plantations in Kyushu
358	(Ueda 2016, 2020). Further studies are needed to clarify the local differences in the habitat preference
359	of this species.

360 Silpha perforate is known to prefer sites with high vegetation cover degrees irrespective of the

372	Conclusion
371	
370	not show a clear preference for low vegetation ground cover levels in this study.
369	irrespective of the vegetation ground cover. It is difficult to discuss the reason why N. macurifrons did
368	the density of this species before logging may still strongly affect the abundances in this study
367	abundances a few years after logging (Koivula 2002). Since S. perforate is flightless (Ikeda et al. 2007)
366	cover degrees in this study. Some flightless forest carabid beetles are known not to decrease their
365	Ueda and Sato 2020). However, these two species also did not show preferences for the vegetation
364	nor in previous studies (Katakura and Fukuda 1974; Katakura and Ueno 1985; Katakura et al. 1985;
363	Neither S. perforate nor N. maculifrons showed preferences for the light environments in this study
362	sites with low vegetation cover degrees irrespective of the light environment (Ueda and Sato 2020).
361	light environment (Ueda and Sato 2020). Conversely, Nicrophorus maculifrons is known to prefer

In Japan, conifer plantations mature and become ready for harvesting in the large areas. To conserve forest ecosystems, harvesting methods that mitigate logging impacts need to be developed. Among harvesting methods, retention forestry and small-sized clear-cuttings are thought to partially mitigate logging impacts, and they were evaluated in mature Sakhalin fir plantation forests in Hokkaido, northern Japan, where a variety of logging operations have been conducted. We collected necrophagous silphid and dung beetles in logged stands, unharvested natural broad-leaved forests, and

379	unharvested plantation forests using carrion-baited pitfall traps. All logging operations strongly
380	affected the beetle assemblages. The beetle assemblages in the 0.36 ha unharvested forest patch under
381	the aggregated retention stands were almost identical to those outside the unharvested forest patch and
382	those in the whole clear-cuts. This result suggested that the unharvested forest patch did not act as
383	refugia (lifeboat) for the forest species. However, the total biomass (dry weight) of beetles, the total
384	abundance of forest species, and the abundances of two dominant forest species were significantly and
385	positively related to the trunk basal area of retained trees in the dispersed retention stands. This result
386	indicated that dispersed retention mitigated the logging impacts for forest species and the estimated
387	ecological function of the beetles. The total abundance of forest species was significantly higher in the
388	small clear-cuts than in the whole clear-cuts. This result showed that the small-sized clear-cuttings
389	weakly mitigated the logging impacts. An open-land species, O. ater, was abundant in the harvested
390	area irrespective of the amount of retained trees, the retained forest patch, and the size of the clear-
391	cutting area. These results indicated that the retention forestry and the small clear-cuttings did not
392	prevent this open-land species from entering the harvested area. Finally, we concluded that the
393	dispersed retentions and the small-sized clear-cuttings are more useful harvesting methods for
394	conserving forest species of necrophagous silphid and dung beetles than whole clear-cuttings and for
395	preserving the habitats of open-land species as well as whole clear-cuttings.

O. ater and N. investigator were identified as open-land species and forest species, respectively,

in this study, but these species may change their habitats along with longitudinal and/or altitudinal
 temperature changes.

399

400 Acknowledgements

401 We wish to thank the officials of the Fishery and Forestry Department of Hokkaido Prefecture 402 and the local branch of the Sorachi Forest Office and researchers of the Forestry Research Institute, 403 Hokkaido Research Organization, for their help with the REFRESH project. We also thank Kenichi 404 Ozaki (FFPRI's Hokkaido Res. Ctr.) and Nobuhiro Akashi (Forestry Research Institute, Hokkaido 405 Research Organization), who helped us conduct this study, Satoshi Yamanaka (FFPRI's Hokkaido 406 Res. Ctr.) and Katsuhiko Sayama (FFPRI's Kyushu Res. Ctr.) who helped us to conduct field work, 407 Hideaki Goto, Meiko Nakamura, and Miwa Kawano (FFPRI's Kyushu Res. Ctr.) who helped us to 408 sort insect specimens and anonymous referees who made comments that led to considerable 409 improvement of the text. This study was supported by Mitsui & Co., Ltd., Environment Fund grant 410 number R15-0025 and JSPS KAKENHI grant numbers JP25252030 and 18H04154. 411

412 Authors contributions AU conceived the ideas and designed the methodology; AU and SS collected 413 the data; AU and HI analysed the data; AU wrote the manuscript; all authors contributed critically to 414 the drafts and gave final approval for publication.

4	1	5

416 **Ethical standards**

- 417 **Conflict of interest** The authors declare no conflicts of interest.
- 418

419 **References**

- 420 Aiura H, Kato A, Hasegawa M (1996) Occurrence process of shallow landslides after clear-cutting
- 421 beech and planting conifers on heavy-snow mountain slopes. J Jpn For Soc 78:398-403 (in
- 422 Japanese with English summary)
- 423 Akashi N, Tsushima T, Unno A, Nagasaka A, Nagasaka Y, Ohno Y, Nitta N, Watanabe I, Minamino K,
- 424 Yamada K, Ishihama N, Takiya M, Tsuda T, Takeuchi F, Ishizuka W, Fukuchi M, Yamaura Y,
- 425 Ozaki K, Hironaka Y, Inari N (2017) Composition of trees before harvesting in the Retention
- 426 Experiment for plantation FoREstry in Sorachi, Hokkaido (REFRESH) sites. Bull Hokkaido For
- 427 Res Inst 54: 31-45 (in Japanese with English summary)

428 Amézquita S, Favila ME (2011) Carrion removal rates and diel activity of necrophagous beetles

- 429 (Coleoptera: Scarabaeinae) in a fragmented tropical rain forest. Environ Entmol 40:239-246
- 430 Attisano A, Kilner RM (2015) Parental effects and flight behaviour in the burying beetle, Nicrophorus
- 431 *vespilloides*. Anim Behav 108:91-100
- 432 Aubry KB, Halpen CB, Peterson CE (2009) Variable-retention harvests in the Pacific Northwest: A

434	Baker SC, Grove SJ, Forster L, Bonham KJ, Bashford D (2009) Short-term responses of ground-active
435	beetles to alternative silvicultural systems in the Warra Silvicultural Systems Trial, Tasmania,
436	Australia. For Ecol Manage 258:444-459.
437	Baker SC, Halpern CB, Wardlaw TJ, Kern C, Edgar GJ, Thomson RJ, Bigley RE, Franklin JF, Gandhi
438	KJ, Gustafsson L, Johnson S, Palik BJ, Spies TA, Steel EA, Weslien J, Strengbom J (2016) A
439	cross-continental comparison of plant and beetle responses to retention of forest patches during
440	timber harvest. Ecol Appl 26:2493-2504
441	Barton PS, Cunningham SA, Macdonald BCT, McIntyre S, Lindenmayer DB, Manning AD (2013)
442	Species traits predict assemblage dynamics at ephemeral resource patches created by carrion.
443	PLOS ONE 8: e53961, 9 pp
444	Boer PJ den (1970) On the significance of dispersal power for populations of carabid-beetles
445	(Coleoptera, Carabidae). Oecologia 4:1-28
446	Braun-Blanquet J (1964) Pflanzensoziologie. 3 Aufl. Springer, Wien, 865 pp

review of short-term findings from the DEMO study. For Ecol Manage 258:398-408

- 447 Creighton JC, Schnell GD (1988) Short-term movement patterns of the endangered American burying
- 448 beetle *Nicrophorus americanus*. Biol Conserv 86:281-287

433

- 449 Davis AJ, Holloway JD, Huijbregts H, Krikken J, Kirk-Spriggs AH, Sutton SL (2001) Dung beetles as
- 450 indicators of change in the forests of northern Borneo. J Appl Ecol 38:593–616

451	Fedrowitz K, Koricheva J, Baker SC, Lindenmayer DB, Palik B, Rosenvald R, Beese W, Franklin JF,									
452	Kouki J, Macdonald E, Messier C, Sverdrup-Thygeson A, Gustafsson L (2014) Can retention									
453	forestry help conserve biodiversity? A meta-analysis. J Appl Ecol 51:1669-1679									
454	Forestry Agency of Japan (2018) Annual report on forest and forestry in Japan fiscal year 2018. The									
455	annual report group of the Forestry Agency, Tokyo, 40pp, URL:									
456	http://www.maff.go.jp/e/data/publish/attach/pdf/index-176.pdf. Accessed 8 March 2021									
457	Gardner TA, Barlow J et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests.									
458	Ecol Lett 11:139-150									
459	Gibbs JP, Stanton EJ (2001) Habitat fragmentation and arthropod community change: carrion beetles,									
460	phoretic mites, and flies. Ecol Appl 11:79-85									
461	Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lohmus A, Pastur									
462	GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayn A, Franklin JF									
463	(2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:									
464	633-645									
465	Ikeda H, Kubota K, Kagaya T, Abe T (2007) Flight capabilities and feeding habits of silphine beetles:									
466	are flightless species really "carrion beetles"? Ecol Res 22:237-241									
467	Imaizumi F, Sidle RC (2012) Effects of forest harvesting on hydrogeomorphic processes in steep									
468	terrain of central Japan. Geomorphology 169-170:109-122.									

469	Imaizumi F, Sidle RC, Kamei R (2008) Effects of forest harvesting on the occurreance of landslides
470	and debris flows in steep terrain of central Japan. Earth Surf Process Landforms 33:827-840.
471	Ito S, Ishigamo S, Mizoue N, Buckley GP (2006) Maintaining plant species composition and diversity
472	of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu,
473	southern Japan. For Ecol Manage 231:234-241
474	Katakura H, Fukuda H (1975) Faunal makeup of ground and carrion beetles in Kamiotoineppu,
475	Hokkaido University Nakagawa Experiment Forest, Northern Japan, with some notes on related
476	problems. Res Bull Col Exp For Coll Agr Hokkaido Univ 32:75-92
477	Katakura H, Ueno R (1985) A preliminary study on the faunal make-up and spatio-temporal
478	distribution of carrion beetles (Coleoptera: Silphidae) on the Ishikari coast, northern Japan. Jap J
479	Ecol 35:461-468
480	Katakura H, Sonoda M, Yoshida N (1986) Carrion beetle (Coleoptera, Silphidae) fauna of Hokkaido
481	University Tomakomai experiment forest, Northern Japan, with a note on the habitat preference
482	of a note on the habitat preference of a geotrupine species, Geotrupes laevistriatus (Coleoptera,
483	Scarabaeidae). Res Bull Col Exp For Coll Agr Hokkaido Univ 43:43-55
484	Kawai N, Hori S, Kawahara M, Inagaki M (2005) Atlas of Japanese Scrabaeoidea vol 1 coprophagous
485	group, Roppon-ashi Entomological Books, Tokyo, 189pp (in Japanese)
486	Koivula, M (2002) Alternative harvesting methods and boreal carabid beetles (Coleoptera, Carabidae).

487 For Ecol Manage 167: 103–121

- 488 Koivula M, Hyyryläinen V, Soininen E (2004) Carabid beetles (Coleoptera: Carabidae) at forest-
- 489 farmland edges in southern Finland. J Insect Conserv 8:297-309
- 490 Kurosawa Y (1985) Silphidae. In: Ueno S, Kurosawa Y, Sato M (eds) The Coleoptera of Japan in color
- 491 vol II, Hoikusha Co, Osaka, pp 246-252 (in Japanese)
- 492 Larsen TH, Forsyth A (2005) Trap spacing and transect design for dung beetle biodiversity studies.
- 493 Biotropica 37:322-325
- 494 Lindenmayer DB, Franklin JF, Lõhmus A, Baker SC, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J,
- 495 Pastur GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney J, Wayne A,
- 496 Gustafsson L (2012) A major shift to the retention approach for forestry can help resolve some
- 497 global forest sustainability issues. Conserv Lett 5:421-431
- 498 Magura T, Bogyó D, Mizser S, Nagy DD, Tóthmérész B (2015) Recovery of ground-dwelling
- 499 assemblages during reforestation with native oak depends on the mobility and feeding habits of
- 500 the species. For Ecol Manage 339:117-126
- 501 Matveinen-Huju K, Niemelä J, Rita H, O'Hara RB (2006) Retention-tree groups in clear-cuts: Do they
- 502 constitute 'life-boats' for spiders and carabids? For Ecol Manage 230:119-135
- 503 McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden
- 504 Beach, 300pp

505	MJM Software I	Design (20)	11) PC-ORD	ver 6.07, Grened	en Beach, Oregon
		ω	/	,	, 0

506	Mori AS.	Kitagawa 🛛	R (2014)) Retention	forestrv	as a	maior	paradigm	for	safeguarding	forest
000	1,1011 110,	I LIGGUNG	(2011	, 10000101011	1010001	ab a	11100101	paradigin	101	Saregaaranng	101000

- 507 biodiversity in productive landscapes: a global meta-analysis. Biol Conserv 175:65-73
- 508 Nagano M, Suzuki S (2003) Phenology and habitat use among Nicrophorine beetles of the genus
- 509 *Nicrophorus* and *Ptomascopus* (Coleoptera: Silphidae). Edaphologia 73:1-9
- 510 Nichols ES, Gardner TA (2011) Dung beetles as a candidate study taxon in applied biodiversity
- 511 conservation research. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung
- 512 beetles. Wiley-Blackwell, West Sussex, pp 267-291
- 513 Ohkawara K, Suzuki S, Katakura H (1998) Competitive interaction and niche differentiation among
- 514 burying beetles (Silphidae, *Nicrophorus*) in northern Japan. Entomol Sci 1: 551-559
- 515 Ozaki K, Akashi N, Tsushima T, Unno A, Sato S, Sayama K, Nagasaka A, Nagasaka Y, Yamada K,
- 516 Yamaura Y (2018) Retention forestry to manage forests for timber production and biodiversity
- 517 conservation a review to promote the effective application in Japan-. Jap J Ecol 68:101-123.
- 518 Pawson SM, Brockerhoff EG, Norton DA, Didham RK (2006) Clear-fell harvest impacts on
- 519 biodiversity: past research and the search for harvest size thresholds. Can J For Res 36:1035-
- 520 1046
- 521 R Core Team (2021) R: A language and environment for statistical computing, R Foundation for
- 522 Statistical Computing, Vienna, Austria, URL <u>https://www.R-project.org/</u>. Accessed 5 November

523 2021

524	Rosenvald R	, Lõhmus A	(2008)	For what,	when, a	and where	e is green-t	ree retention	better	than cle	ear-
-----	-------------	------------	--------	-----------	---------	-----------	--------------	---------------	--------	----------	------

- 525 cutting? A review of the biodiversity aspects. For Ecol Manage 255:1-15
- 526 Sugiura S, Tanaka R, Taki H, Kanzaki N (2013) Differential responses of scavenging arthropods and
- 527 vertebrates to forest loss maintain ecosystem function in a heterogeneous landscape. Biol Consev
- 528 159:206-213
- 529 Suzuki S (2005) Potential for Nicrophorinid beetle (Silphidae: Coleoptera) as environmental indicator
- and the effectiveness of baited hanging traps to collecting Nicrophorinid beetles. J Environ Edu
- 531 8:111-116 (in Japanese with English summary)
- 532 Suzuki S, Kobayashi N, Kato T, Katakura H (2001) Flight muscle dimorphism in Geotrupes
- 533 *laevistriatus* (Geotrupidae: Coleoptera). Entomol Sci 4: 291-294
- 534 Ueda A (2015) Tools for evaluating forest habitat using carrion silphid (Silphidae) and scarabaeoid
- 535 dung beetles (coprophagous group of Scarabaeoidea) as indicators: Effects of bait type, trap type,
- and trap number on beetle captures. Bull For Forest Prod Res Inst 14:1-14 (in Japanese with
- 537 English summary)
- 538 Ueda A (2016) Response of assemblages of carrion beetles (carrion silphid and scarabaeoid dung
- beetles) in a forest consisting of small, different-aged stands. J Jpn For Soc 98:207-213 (in
- 540 Japanese with English summary)

- 542 leaved forests and other forest environments. Bull For Forest Prod Res Inst 19:105-114 (in
- 543 Japanese with English summary)
- 544 Ueda A, Ohara M (2018) Seasonal changes in beetles collected by carrion traps in Kumamoto City.
- 545 Kyushu J For Res 71:19-22 (in Japanese)
- 546 Ueda A and Sato S (2020) Preliminary study of assemblages of carrion silphid and dung beetles in a
- 547 forest consisting of small, different-aged, different-tree species stands in Sapporo. Boreal For Res
- 548 68:11-15 (in Japanese)
- 549 Ueda A, Tone K, Sano M (2016) Assemblages of carrion beetles (Silphidae and coprophagous group
- 550 of Scarabaeoidea) in Okinawa City and Nago City and their seasonal changes. Kyushu J For Res
- 551 69:53-57 (in Japanese)
- 552 Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth edition. Springer, New York.
- 553 Wettlaufer JD, Burke KW, Beresford DV, Martin PR (2021) Partitioning resources through the seasons:
- abundance and phenology of carrion beetles (Silphidae) in southeastern Ontario, Canada. Can J
- 555 Zool 99: 961-973.
- 556 Wilhelm SI, Larson DJ, Storey AE (2001) Habitat preference of two burying beetles (Coleoptera:
- 557 Silphidae: *Nicrophorus*) living among seabirds. Northeastern Natur 8:435-442
- 558 Wilson DS (1983) The effect of population structure on the evolution of mutualism: A field test

559	involving burying beetles and their phoretic mites. Am Nat 121:851-870
560	Work T, Jacobs JM, Spence JR, Volney WJ (2010) High levels of green-tree retention are required to
561	preserve ground beetle biodiversity in boreal mixedwood forests. Ecol Appl 20:741-751
562	Wu LH, He FL, Spence JR (2020) Recovery of a boreal ground-beetle (Coleoptera: Carabidae) fauna
563	15 years after variable retention harvest. J Appl Ecol 57:1717-1729
564	Yamanaka S, Yamaura Y, Sayama K, Sato S, Ozaki K (2021) Effects of dispersed broadleaved and
565	aggregated conifer tree retention on ground beetles in conifer plantations. For Ecol Manage
566	489:119073, 10pp.
567	Yamaura, Y, Akashi N, Unno A, Tsushima T, Nagasaka A, Nagasaka Y, Ozaki K (2018) Retention
568	experiment for plantation forestry in Sorachi, Hokkaido (REFRESH): a large-scale experiment
569	for retaining broad-leaved trees in conifer plantations. Bull For Forest Prod Res Inst 17:91-109
570	
571	Figure legends
572	Fig. 1 Photos of traps set at NC1 (photo A), PC1 (B), SL3 (C), SM3 (D), SS1 (E), GRR2 (F), GRC2
573	(G), SC3-1 (H), and CC2 (I). All photos were taken on 13-15 June, 2017. Refer to Table 1 for
574	site names.
575	

576 Fig. 2 Relationships among the abundances of dominant beetle species, the trunk basal area, and rank

577	of vegetation ground cover in the whole harvested stands and the unharvested stands.
578	Open circle: whole harvested stand, grey circle: unharvested natural broad-leaved forest, and
579	closed circle: unharvested fir plantation forest.
580	(O): species categorized as open-land species, (F): species categorized as forest species.
581	
582	Fig. 3 Results of NMS analysis as applied to ordinate sites with similarities of necrophagous silphid
583	and dung beetle assemblages
584	Final stress = 8.3% . Abbreviations of site categories are defined in Table 1. Parenthesized % on
585	titles of axes indicate the proportion of variance represented by each axis, based on the $\ensuremath{r^2}$
586	between the distance in the ordination space and the distance in the original space.
587	
588	Fig. 4 Relationships between trunk basal area and total abundance (a), total biomass (b), and total
589	abundance of forest species (c) in the dispersed retention sites and the whole clear-cuts.
590	
591	Fig. 5 Relationships between trunk basal area and total abundance (a), species richness (b), total
592	biomass (c), total abundance of forest species (d), and an open-land species, Onthophagus ater
593	(e), in the unharvested fir plantation forest (closed circle), inside the 0.36 ha unharvested forest
594	patch in aggregated retention (open circle), outside the unharvested forest patch in aggregated

595	retention (closed triangle), and in the whole clear-cut (open triangle).
596	
597	Fig. 6 Total abundance of forest species in small clear-cuts and whole clear-cuts
598	
599	Titles and footnotes of tables
600	Table 1 Characteristics of study sites, environmental variables used for analyses, number of traps set,
601	and trapping period
602	BLT means broad-leaved tree
603	a Referred Akashi et al. (2017) except for GRR3, where windthrow had occurred before beginning.
604	b Mean of each trap site. The vegetation ground covers were observed on 28-31 Aug. 2017.
605	c Result from the trees in a 10×10 m plot in which the centre was a trapping site measured on 28 Aug.
606	2017.
607	d Two traps were set, but one trap was broken by animals.
608	
609	Table 2 Results of analyses for the effects of dispersed retention
610	O: open-land species, F: forest species. nb means negative binomial distribution. t value was used for
611	normal distribution.
612	

- 613 Table 3 Results of analyses for the effects of small clear-cutting
- 614 O: open-land species, F: forest species. nb means negative binomial distribution. t value was used for
- 615 normal distribution.
- 616
- 617 Appendix table 1 Number of beetles captured in each collection period
- 618
- 619 Appendix table 2 Number of beetles captured in each trap

Site	Site name	Site No.	Area (ha)	Year of harvest	Tree density ^a (n/ha)	BLT density ^a (n/ha)	Basal area ^a (m²/ha)	BLT basal area ^a (m ² /ha)	Vegetation ground cover ^b (index 0-5)	No. traps set	Trapping period in 2017 (days)
Unharvested natural broad-leaved	NC	1	4.96	-	994	994	51.68	51.68	3.0	2	15 Jun - 3 Oct (110)
tree (BLT) forest		2	5.55	-	787	756	36.75	34.91	2.5	2	13 Jun - 2 Oct (111)
		3	6.61	-	825	744	28.47	19.42	1.5	2	14 Jun - 2 Oct (110)
Unharvested Sakhalin fir plantation	PC	1	5.87	-	868	239	39.91	3.99	4.0	2	15 Jun - 3 Oct (110)
forest (ca 50 years old)		2	7.63	-	964	175	41.68	3.92	2.5	2	14 Jun - 3 Oct (111)
		3	6.26	-	700	136	35.88	2.92	2.5	2	14 Jun - 2 Oct (110)
Dispersed retention-cutting with	SL	1	7.94	2014	103	103	5.79	5.79	4.5	2	15 Jun - 3 Oct (110)
large-amount of BLT (ca 100		2	7.92	2015	109	109	7.50	7.50	3.0	2	14 Jun - 3 Oct (111)
uees/na)		3	6.99	2016	107	107	7.37	7.37	2.0	2	15 Jun - 3 Oct (110)
Dispersed retention-cutting with	SM	1	7.85	2014	51	51	3.76	3.76	4.0	2	15 Jun - 3 Oct (110)
middle-amount of BLT (ca 50		2	7.10	2015	60	60	2.17	2.17	4.5	2	13 Jun - 2 Oct (111)
		3	7.72	2016	57	57	4.26	4.26	4.0	1^d	15 Jun - 3 Oct (110)
Dispersed retention-cutting with	SS	1	6.30	2014	11	11	0.59	0.59	3.0	2	15 Jun - 3 Oct (110)
small-amount of BLT (ca 10 trees/ha)		2	7.49	2015	13	13	0.75	0.75	5.0	2	13 Jun - 2 Oct (111)
		3	5.76	2016	10	10	0.46	0.46	3.5	2	13 Jun - 2 Oct (111)
60×60 m unharvested patch of	GRR	1	0.36	-	833	47	49.16	1.32	1.0	1	15 Jun - 3 Oct (110)
aggregated retention-cutting		2	0.36	-	661	36	48.92	1.60	3.0	1	13 Jun - 2 Oct (111)
		3	0.36	-	100 ^c	0^{c}	1.19 ^c	0^{c}	5.0	1	14 Jun - 2 Oct (110)
Clear-cutting area of aggregated	GRC	1	6.42	2014	0	0	0	0	4.0	2	15 Jun - 3 Oct (110)
retention-cutting		2	7.87	2015	0	0	0	0	3.0	1^d	13 Jun - 2 Oct (111)
		3	6.03	2016	0	0	0	0	3.0	2	14 Jun - 2 Oct (110)
Quadrilateral small-sized (ca 1-ha)	SC	2-1, 2, 3	1.00×3	2015	0	0	0	0	4.0	1×3	14 Jun - 2 Oct (110)
clear-cutting		3-1, 2	1.00×2	2016	0	0	0	0	3.0	1×2	13 Jun - 2 Oct (111)
Whole clear-cutting	CC	1	6.89	2014	0	0	0	0	5.0	2	14 Jun - 3 Oct (111)
		2	7.87	2015	0	0	0	0	4.5	2	13 Jun - 2 Oct (111)
		3	6.17	2016	0	0	0	0	3.5	2	14 Jun - 2 Oct (110)

Table 1 Characteristics of study sites, environmental variables used for analyses, number of traps set, and trapping period

BLT means broad-leaved tree

^a Referred Akashi et al. (2017) except for GRR3, where windthrow had occurred before beginning.

^b Mean of each trap site. The vegetation ground covers were observed on 28-31 Aug. 2017.

^cResult from the trees in a 10×10 m plot in which the centre was a trapping site measured on 28 Aug. 2017.

^d Two traps were set but one trap was broken by animals.

Axis 1 (82.1%)

