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Abstract 18 

Knowledge of post-zygotic hybrid incompatibility is essential to understand speciation. Although 19 

the genes and molecular mechanisms involved in hybrid incompatibility are being elucidated in model 20 

plants and crops, the information on woody non-model plants is lacking. In the seedlings of a cross between 21 

the most famous ornamental cherry cultivar Cerasus × yedoensis ‘Somei-yoshino’ and its closely related 22 

wild species Cerasus itosakura, we discovered a hybrid incompatibility characterized by a phenotype in 23 

which growth stops after the expansion of the first true leaves and the seedling eventually dies. To elucidate 24 

the molecular mechanisms related to this seedling necrosis, we performed a comprehensive expressed 25 

genes analysis on normal-growth and necrotic weak-growth (SW) hybrid seedlings. The RNA-seq results 26 

showed over 1,500 differentially expressed genes (DEGs) specified for the SW. Numerous genes associated 27 

with plant defense response, such as pathogenesis-related genes, and several receptor-like protein kinases 28 

were included in SW-specific up-regulated DEGs. The Gene Ontology (GO) enrichment analysis also 29 

showed the significant association of “defense response” in SW seedlings. These up-regulated defense-30 
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related gene expressions were particularly observed in the hypocotyls. On the contrary, the reduction of 1 

genes expression related to photosynthesis-related gene expression as well as reduction and a partial 2 

decrease in the gene expressions of cell division and cell cycle at specific parts of seedlings were also 3 

observed in the SW. Our results suggest that an up-regulated defense-related gene expression suppress the 4 

meristem growth and deviation, resulting in growth failure as an autoimmune response in hybrid cherry 5 

seedlings. This study is the first report inferring the molecular mechanisms of hybrid necrosis in woody 6 

plants. 7 

 8 
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 1 

Introduction 1 

 2 

In a plant taxon that exhibits no distinct reproductive barrier before fertilization, post-zygotic 3 

reproductive isolation, such as hybrid sterility, weakness, necrosis, and hybrid breakdown (hybrid 4 

incompatibility that occurs in later generation after F1), significantly affects the maintenance of species 5 

characteristics, i.e., speciation. Numerous studies have searched for genes involved in reproductive 6 

isolation, and several genes behind the post-zygotic reproductive isolation have been identified (Rieseberg 7 

and Willis 2007; Rieseberg and Blackman 2010). In the model plants Arabidopsis and rice, the expressions 8 

of genes derived from other lineages cause hybrid weakness and incompatibility (Bomblies et al. 2007; 9 

Alcázar et al. 2009; Yamamoto et al. 2010; Chae et al. 2014). Here, the heterologous allele interacts with 10 

another locus located in a cluster of receptor-like kinase (RLK) genes with leucine-rich repeat domain 11 

(LRR). The RLKs precipitate an autoimmune response and inhibit the growth of hybrid seedlings. The 12 

mechanism of hybrid incompatibility by the interaction of these two loci is understood as the Bateson–13 

Dobzhansky–Muller model assuming that two genes originating from an independently mutated species 14 

or population cause harmful interactions (Orr 1996; Bomblies and Weigel 2007). 15 

RLK is associated with plant defense. Especially, nucleotide-binding and LRR receptors (NB-LRR) 16 

are involved in the recognition of external stimuli, such as various pathogens, and trigger the expression of 17 

downstream defense-related genes. NB-LRR is also involved in the recognition of pathogen effectors 18 

(avirulence protein) and triggers more intense defense responses, such as the production of reactive oxygen 19 

species, accumulation of salicylic acid (SA), and even hypersensitive response (HR). They are known as 20 

microbe-associated molecular pattern (MAMP)-triggered immunity (PTI) and effector-triggered immunity 21 

(DeYong and Innes 2006; Jones and Dangl 2006; Cesari 2018). In the hybrid seedlings of model plants, 22 

the up-regulated expressions of genes involved in the defense response, such as pathogenesis-related (PR) 23 

genes, and glutathione-S transferase (GST), were observed (Alcázar et al. 2009; Yamamoto et al. 2010). 24 

Moreover, high expressions of similar defense-related genes and transcription factors were observed in 25 

various types of growth failure, including chlorosis, HR, and severe growth abortion (SGA), in hybrid 26 

wheat seedlings (Mizuno et al. 2010, 2011; Hatano et al. 2012; Nakano et al. 2015; Takamatsu et al. 2015). 27 

Currently, the involvement of defense-related genes and autoimmunity in hybrid breakdown has been 28 

observed in several plant taxa (Wan et al. 2021). However, these studies are limited to herbal model plants 29 

and crops, and knowledge about hybrid incompatibility in woody species remains lacking. 30 
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 2 

Flowering cherry (Rosaceae, genus Cerasus or Prunus subgenus Cerasus) is one of the most famous 1 

ornamental tree species in Japan. Since the Edo period (18th century), numerous cultivars have been 2 

produced, many of which are considered to originate by hybridization (Ohba et al. 2007; Kato et al. 2014). 3 

Among cherry species, considerable hybrid seeds have been obtained by artificial pollinations (Watanabe 4 

and Yoshikawa 1967), and no physiological incompatibility has been observed before fertilization. In 5 

nature, frequent pollen transfer between species has been observed, and hybrid zones have been maintained 6 

in contact areas (Tochigi et al. 2021). Thus, flowering cherry is considered to be a taxon with low barriers 7 

to inter-specific hybridization. Nevertheless, distinct morphological and genetic differentiation of each 8 

species has been observed (Ohba et al. 2007; Kato et al. 2014), and more than 10 wild species are distributed 9 

in the small-island Japan. Understanding how speciation is maintained despite such frequent inter-specific 10 

gene flow requires elucidating the mechanism of post-zygotic isolation and hybrid breakdown in the 11 

generation after F1later generations. 12 

In our previous study, we observed that the lethal growth failure (necrotic) phenotype appeared in 13 

about half of the seedlings from crosses between cherry cultivar Cerasus × yedoensis (Matsum.) Masam. 14 

et S.Suzuki ‘Somei-yoshino’ and wild cherry species C. itosakura (Siebold) Masam. et S.Suzuki (syn. C. 15 

spachiana Lavallée ex Ed.Otto) (Tsuruta and Mukai 2015, 2019). ‘Somei-yoshino’ is thought to have 16 

originated from a cross between two wild species, namely, C. speciosa (Koidz.) H.Ohba and C. itosakura 17 

(Ohba et al. 2007). The genetic studies indicated the significant contribution of the two species (Kato et al. 18 

2014; Tsuruta et al. 2017). The phased genome sequence of ‘Somei-yoshino’ also showed that the genome 19 

can be assigned to two kind of contigs derived from C. speciosa and C. itosakura (Shirasawa et al. 2019). 20 

Given that the seedlings from the crossing of ‘Somei-yoshino’ and C. itosakura can be considered as a 21 

backcross progeny at the species-level, the seedling growth failure may therefore be due to hybrid 22 

breakdown. From the fine mapping, one of the candidate loci for the presumable hybrid inviability of 23 

seedlings 1, HIs-1, has been mapped to linkage group 4 of the ‘Somei-yoshino’ map (Tsuruta and Mukai 24 

2019). The candidate region corresponds to an approximate 240 Kb region of the peach genome, where 25 

RLKs and genes with LRR were concentrated. The mapping of inter-specific reproductive barriers were 26 

also reported in other Rosaceae species (inter-specific pear: Montanari et al. 2016, apple × pear: Morimoto 27 

et al. 2020). Interestingly, lethal quantitative trait loci were located in the region with clusters of pest 28 

resistance genes in the inter-specific pear hybrid (Montanari et al. 2016). From these results, the NB-LRR-29 

mediated mechanism of hybrid incompatibility also exists in woody species as in herbal plants. 30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 3 

In this study, we aimed to accumulate knowledge on the physiological mechanisms of hybrid necrosis 1 

in tree species. Recently, information on genome sequencing and annotation for various Rosaceae species, 2 

including Cerasus and Prunus, has been published, and a genomic analysis environment has been 3 

established (Jung et al. 2019). We used this genome information as a reference to conduct a comprehensive 4 

gene expression analysis for the normal-growth (SN) and necrotic weak-growth (SW) seedlings of the 5 

cross between ‘Somei-yoshino’ and C. itosakura. Furthermore, with the addition of transcriptome analysis 6 

of different parts of the SW seedlings, we clarified the physiological mechanism responsible for the lethal 7 

hybrid seedlings of flowering cherries. Here, we also attempted to show that the autoimmune response due 8 

to high expressions of defense-related genes is also a common causal phenomenon in hybrid 9 

incompatibility in woody plants. 10 

 11 

Materials and Methods 12 

 13 

Normal and necrotic plant materials 14 

We artificially pollinated C. itosakura (pollen donor) to ‘Somei-yoshino’ (seed parent), which were 15 

both planted in the University of Tokyo Tanashi Forest. The pollination procedures and seed handling 16 

protocols followed the methods were described in the work of Tsuruta and Mukai (2015). After three 17 

months of wet and chilling incubation, seeds were planted on a vermiculite bed. Of the 31 germinated 18 

seedlings, 12 (38.7%) grew normally, and 13 (41.9%) showed the same lethal phenotype as in previous 19 

studies (Tsuruta and Mukai 2015, 2019). The phenotype of the remaining six seedlings was uncertain 20 

because of insufficient growth after rooting. The lethal phenotype was characterized as the plants that grew 21 

until the emergence of first true leaves but failed to further develop further (Fig. 1B). Finally, the SW 22 

seedlings died after several weeks or a month. Additionally, we collected naturally pollinated seeds from a 23 

wild cherry tree, C. jamasakura (Siebold ex Koidz.) H.Ohba in Tanashi Forest, and seedlings were obtained 24 

after treating the seeds as described above. The necrotic phenotype was never observed in these wild 25 

seedlings. 26 

Approximately two weeks after germination, SN, SW (necrotic fate), and control wild cherry (CJ) 27 

seedlings were collected with three replicates each, immediately frozen by liquid N2, and stored at –80 °C 28 

until RNA extraction. Additionally, true leaves (Leaf), cotyledons (Coty), hypocotyls (Hypo), and root 29 

(Root) were collected separately (Fig. 1C) from three other weakly growing hybrid seedlings and stored in 30 
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 4 

the same manner. 1 

 2 

RNA extraction and sequencing 3 

From the whole plant or each part of the sample seedlings, the total RNA was extracted using the 4 

modified cetyltrimethylammonium bromide (CTAB) method. The sample was powdered in liquid N2 using 5 

mortar and pestle, suspended in CTAB buffer (2% CTAB, 0.1 M Tris-HCl, 20 mM EDTA, 2 M NaCl, and 6 

0.1% dithiothreitol), and incubated at 65 °C for 10 min. An equal volume of chloroform/isoamyl (CIA) 7 

was added and mixed gently, and the supernatant was collected by centrifugation (15,000 rpm, room 8 

temperature, 5 min). This CIA isolation procedure was repeated twice. After adding a quarter volume of 9 

10 M LiCl and mixing gently, the solution was left at –30 °C for at least 2 hours. The precipitate collected 10 

by centrifugation (15,000 rpm, 4 °C, 15 min) was dissolved in TE buffer. CIA isolation and LiCl 11 

precipitation were repeated. After rinsing with 70% ethanol, the RNA precipitate was dissolved in nuclease-12 

free water. The quality of isolated RNA was checked by electrophoresis. All samples had sufficient amount 13 

and quality for RNA-seq except for the root sample, in which only one sample (W03-Root) passed the 14 

quality check. The qualified samples were used for further RNA-seq analysis. 15 

RNA-seq was performed following Macrogen’s regular workflow (Macrogen Inc, Seoul, South 16 

Korea). Briefly, high-throughput sequencing libraries were constructed using the TruSeq stranded mRNA 17 

Library Kit (Illumina, San Diego, CA, USA) following the quality control of RNA. Each library was 18 

sequenced by the Illumina platform (NovaSeq6000) at 100 or 150 bp pair-end reads (over four or six G 19 

bases par sample). All sequencing data have been submitted to the DDBJ Sequence Read Archive 20 

(accession No: DRA011866 and DRA011867). 21 

 22 

RNA-seq data processing and identification of DEGs 23 

The sequenced reads were first analyzed with fastp (Chen et al. 2018) for quality checking and 24 

trimming of low-quality bases and reads (using -3, -q 20, -l 50, -t 1, and -T 1 options). Three genome 25 

sequences, namely, the deeply re-sequenced peach genome (Prunus persica Genome v2.0.a1, Verde et al. 26 

2017), sweet cherry genome (Prunus avium Tieton Genome v2.0.a1, Wang et al. 2020), and ‘Somei-27 

yoshino’ genome (Cerasus × yedoensis Somei-yoshino Genome v1.0, Shirasawa et al. 2019) including two 28 

phasing contigs (SPA: CYEspachiana_r3.0, and SPE: CYEspeciosa_r3.0) registered in the Genome 29 

Database for Rosaceae (GDR: www.rosaceae.org, Jung et al. 2019), were used as reference genomes. The 30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 5 

clean reads were mapped to the reference genomes using bowtie2 (Langmead and Salzberg 2012) with 1 

default settings of the “--sensitive-local”. Samtools v1.11 (Li et al. 2009) was used to convert the file format. 2 

Uniquely mapped reads were used for gene expression quantification with featureCounts (Liao et al. 3 

2014) with GFF files for each reference species. The differentially expressed genes (DEGs) between the 4 

two treatments of CJ, SN, and SW seedlings and between the SN seedlings and each seedling part were 5 

identified using a TCC-GUI pipeline (Su et al. 2019). TMM (Robinson and Oshlack 2010) and edgeR 6 

(Robinson et al. 2010) were used for normalization and DEG identification, respectively, with the number 7 

of iterations equal to 3, FDR cut-off at 0.05, and P < 0.05. Significant DEGs that were common to CJ vs. 8 

SW and SN vs. SW but not present in CJ vs. SN were determined as SW-specific DEGs (Fig. S1). 9 

The expression levels of RNA-seq were verified by quantitative RT-PCR (qPCR) in three genes (Table 10 

S1). Actin (CYE_r3.1SPA5_g019640.1) was selected as a reference housekeeping gene. Primers for qPCR 11 

were developed using Primer-BLAST (Ye et al. 2012) using the ‘Somei-yoshino’ genome as a reference 12 

and are listed in Supplementary Table S1. A total of 1 µg total RNA (same as what was used for RNA-Seq) 13 

was converted to cDNA using iScript gDNA Clear cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). 14 

Using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad), PCR reactions were conducted using 15 

CFX96 Real-Time System (Bio-Rad). The relative expression levels of each gene were calculated from the 16 

average of the three biological replicates using the efficiency correlated model (Pfaffl et al. 2002). The 17 

correlation between the relative expression level and the M-value obtained from RNA-seq was examined. 18 

TCC-normalized expression data were also used to compare the expression levels of 12 specific genes 19 

(eight SW-specific up-regulated DEGs related to defense response, one up-regulated DEG unrelated to 20 

defense response, and three down-regulated DEGs in SW seedlings). Differences in the expressions among 21 

different seedling parts were tested by pairwise t-test with paired = TRUE option. Volcano plots of DEG 22 

identification were also drawn by the TCC-GUI. The Venn diagrams were drawn by R package 23 

VennDiagram v1.6.20 (Chen and Boutros 2011). 24 

 25 

Annotation of DEGs and enrichment analysis 26 

Gene information, such as annotations, BLAST results, InterPro, Gene Ontology (GO) terms, and GO 27 

accessions, were searched in the GDR database. The R package goseq v1.38.0 (Young et al. 2010) was 28 

used to identify significantly enriched GO terms in the SW-specific up- and down-regulated DEGs. 29 

For data referencing of the peach genome, additional singular enrichment analysis (SEA) and 30 
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 6 

parametric analysis of gene set enrichment (PAGE) were performed by agriGO v2.0 web tool 1 

(http://systemsbiology.cau.edu.cn/agriGOv2/, Tian et al. 2017). Furthermore, the enrichment of each gene 2 

family was analyzed using the web application GenFam (www.mandadilab.com/genfam/, Bedre and 3 

Mandadi 2019). 4 

 5 

Phasing of expressed genes and assignments of origin 6 

We selected 8, 4, and 4 peach genes expressed in all seedlings from the HIs-1 candidate region of 7 

chromosome 4 (Tsuruta and Mukai 2019), outside the candidate region, and another chromosome, 8 

respectively (Table S21). Using bam data mapped to the peach genome, each haplotype allele sequence of 9 

the SN and SW seedlings was detected manually by phasing of the SNP variant with Integrative Genome 10 

Viewer v2.8.9 (Robinson et al. 2017). For each phased allele sequence, similarities with the paralog genes 11 

in the SPA and SPE genomes (Cerasus × yedoensis Somei-yoshino genome v1.0 cds) were searched using 12 

the BLAST tool on the GDR website. 13 

 14 

Results 15 

 16 

Gene expression profiling and particular DEGs in SW seedlings 17 

From the RNA-seq, over 50 M sequencing reads with 8.1–13.2 G bases per seedling sample were 18 

obtained (Table S31). Over 96.6%, 95.3%, and 97.8% of the quality filtered clean reads were mapped to 19 

the peach, sweet cherry, and ‘Somei-yoshino’ reference genomes, respectively (Table S32). 20 

Using the peach genome containing 47,089 transcribable genes as a reference, 22,218 genes were 21 

expressed in any seedling. Among genes, 19,148 (86.2%) were commonly expressed in all seedlings (Table 22 

1). TCC analysis determined that 1,894, 3,841, and 3,638 genes were significant DEGs in the comparison 23 

of CJ vs. SN, CJ vs. SW, and SN vs. SW, respectively. A total of 1,856 genes were identified as specific 24 

DEGs in the SW seedlings (Fig. S1), and of these genes, 661 showed high expression (up-regulated DEGs), 25 

and 1,195 presented decreased expression compared with the SN and CJ seedlings (down-regulated DEGs). 26 

When the sweet cherry and ‘Somei-yoshino’ genomes were used as references, 2,644 (up-regulated: 935, 27 

down-regulated: 1,709) and 1,535 (up-regulated: 871, down-regulated: 664) genes were identified as SW-28 

specific DEGs (Fig. S1). The expression pattern well corresponded with the qPCR results (r2 = 0.90, Fig. 29 

S2). 30 
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 7 

 1 

Annotation of DEGs 2 

From the results of the BLAST search, several plant defense-related genes were found in the up-3 

regulated DEGs (Table 2, S43). One of themgene is a member of the PR gene group. The most up-regulated 4 

DEG, Prupe.8G152900 which shows similarity to the Arabidopsis AT2G14580.1 gene, was a member of 5 

PR1 in the peach genome referencing analysis. The paralogous PR genes FUN_030145-T1, 6 

CYE_r3.1SPA8_g020410, and CYE_r3.1SPE8_g024490 were identified as the most, second, and third 7 

most up-regulated DEGs in the sweet cherry, ‘Somei-yoshino’ phased SPA, and SPE genome referencing 8 

analysis, respectively. Nine PR1 homologous genes were detected in the peach genome. Of these genes, 9 

eight were significant DEGs in SN vs. SW. Furthermore, six genes were detected as SW-specific up-10 

regulated DEGs (data not shown). Several other PR genes, such as thaumatin-like protein (TLP), a member 11 

of PR5, and Bet v1 superfamily gene belonging to PR10, were also found in the top 50 up-regulated DEGs 12 

(Table 2, S43). 13 

Another remarkable defense-related gene was a member of RLK. Of the ‘Somei-yoshino’ SPE 14 

genome genes, CYE_r3.1SPE4_g004570.1, which has RLK and LRR domains, was the most up-regulated 15 

DEG (Table S3A–S43D). Other LRK genes, including cysteine-rich LRK (CRK) and cysteine-rich repeat 16 

secretary protein (CRRSP), were also found in the DEG lists (Table 2, S43). Additionally, several genes 17 

with oxidoreductase activity, such as GST, cytochrome P450 (Cyt_P450), and 2-oxoglutarate and Fe(II)-18 

dependent oxygenase (2OG-FeII), and WRKY transcription factors were listed in the up-regulated DEGs 19 

(Table 2, S43). 20 

The most down-regulated DEG was the Prupe.3G208300.1 gene annotated as GDSL-like in the peach 21 

genome referencing analysis. Genes annotated as laccase 17 (LAC17), fasciclin-like arabinogalactan, and 22 

trichome birefringence-like frequently ranked the top in the down-regulated DEG list (Table S43). The down-23 

regulation of several photosynthesis-related genes was also observed (Table S43). 24 

 25 

Enrichment analyses 26 

In the peach genome referencing analysis, 397 up- and 690 down-regulated genes that were annotated 27 

with GO terms were used for the enrichment analysis. From the results of goseq, we determined that 5, 15, 28 

and 2 GO terms belonging to biological process (BP), molecular function (MF), and cellular component 29 

(CC), respectively, were significantly enriched in the up-regulated DEGs (FDR < 0.05, Fig. 2A). Of the BP 30 
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 8 

terms, GO:0009607 “response to biotic stimulus” was identified as the most significantly enriched term in 1 

the up-regulated DEG list. The next most significant GO, i.e., GO:0006952 “defense response,” was 2 

consistently detected as a a significantly enriched GO term with 4.20e-09 FDR level, in which 16 of 99 3 

genes were significantly highly expressed in SW seedlings. A remarkably significant enrichment of 4 

“defense response” was consistently observed  enriched GO in the sweet cherry and ‘Somei-yoshino’ 5 

genome referencing analyses (Fig. 2A). In addition, GO:0009607 “response to biotic stimulus” was 6 

identified as the most significantly enriched term in the up-regulated DEG list. two GO terms “protein 7 

phosphorylation” and “oxidation-reduction process” were also consistently enriched in three genome 8 

referencing analyses. The “abscisic acid-activated signaling pathway” term was the most enriched BP GO 9 

in the ‘Somei-yoshino’ genome referencing analysis, but it showed exhibited no significance in the peach 10 

reference (Fig. 2A). In MF and CC, GOs similar to the significant GOs in BP or associated with the results 11 

indicatedAs shown in the annotation of up-regulated DEGs were significantly enriched, e.g., , the 12 

significant enrichment of several GO terms, such as “oxidation-reduction process” in BP and 13 

“oxidoreductase activity,” “protein kinase activity,” and “DNA-binding transcription factor activity” in MF 14 

was also commonly detected (Fig. 2A). TheThis significant enrichmentce of two plant defense-related GO 15 

terms (“response to biotic stimulus” and “defense response”) was consistently observedverified both in 16 

SEA and PAGE analyses (Figs. S32 and S43, respectively). 17 

On the other hand, 15, 19, and 12 GO terms for BP, CC, and MF were significantly enriched in down-18 

regulated DEGs of peach genome referencing analysis, respectively (Fig. 2B). Here, the most significantly 19 

enriched GO term was “photosynthesis” (GO:0015979). Additional The photosynthesis-related GO terms, 20 

such as GO:0015979 “photosynthesis” and GO:0009765 “photosynthesis, light harvesting” in BP and 21 

GO:0009522 “photosystem I” and GO:0009523 “photosystem II” in CC, were detected as significantly 22 

enriched GO terms (Fig. 2B). The “oxidation-reduction process” was also observed in the significant GO 23 

enrichment of down-regulated DEGs. Besides this, considerable enrichment of the five BP GOs 24 

(GO:0005975, GO:0007017, GO:0009664, GO:0030244, and GO:0046274) was consistently observed in 25 

the three reference analyses (Fig. 2B). 26 

The GenFam analysis determined that 17 and 29 gene families were significantly enriched in the up- 27 

and down-regulated DEGs, respectively (FDR < 0.05, Table S54). The results were similar with the results 28 

of DEG annotation and GO enrichment analysis. For example, a significant enrichment was found in gene 29 

families, such as GST, Bet v1, Cyt_P450, CRK, WRKY, 2OG-FeII, “cysteine-rich secretory proteins, 30 
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 9 

antigen 5, and pathogenesis-related 1 protein (CAP),” and TLP, for the SW up-regulated DEGs and 1 

“Chlorophyll a/b-binding” for the down-regulated DEGs (Table S54). The phytocyanin, multicopper 2 

oxidase, and trichome birefringence-like gene families were also significantly enriched (Table S5). 3 

 4 

Expression analysis for each seedling part 5 

More than 93.2% of the sequenced reads for each seedling part were mapped to the peach genome 6 

(Table S31). The count data of uniquely mapped read were normalized by TCC-GUI and then used for the 7 

expression pattern comparison in 12 genes. Of the nine identified SW-specific up-regulated DEGs, all of 8 

eight defense-related genes, such as Prupe.8G152900 (PR1), showed a significantly high expression in 9 

Hypo (P <0.05, Table 2, Fig. 3). Another SW-specific DEG, Prupe.7G051600 which was annotated as 10 

BG3, was highly expressed not only in the Hypo but also in Leaf. On the other hand, the expressions of 11 

down-regulated DEGs in SW seedlings, namely, Prupe.3G208300 (GDSL), Prupe.3G076300 (2OG-FeII), 12 

and Prupe.6G257700 (LAC17), were low across all parts (Fig. 3). 13 

A comparison of SN seedlings with each seedling part identified 4,996, 2,102, and 5,405 DEGs in 14 

Coty, Leaf, and Hypo, respectively (Fig. S54). A total of 7,659 DEGs were significantly enriched in any 15 

seedling part, and 1742 of them were common to the SW-specific DEGs. From the PAGE results, 245 GO 16 

terms (BP: 142, CC: 33, and MF: 70) were significantly enriched in any seedling part (Coty: 92, Leaf: 193, 17 

and Hypo: 172; Fig. 4, S65). Of these GO terms, 62 were commonly enriched in all parts. The enrichment 18 

of “defense response” and “response to biotic stimulus” GO terms, which showed significant enrichment 19 

in the above comparison of SN vs. SW, was the significant in the Hypo (FDR: 0.00037 and 5.60e-05, 20 

respectively) but not in other parts of SW seedlings (Fig. 4), similar to the expression level data. On the 21 

other hand, GO terms related to photosynthesis were the most down-regulated in Hypo (Fig. 4, S65). In 22 

addition, the significantly down-regulated enrichment of several GO terms associated with cell division, 23 

such as “cell cycle” and “mitotic cell cycle,” was observed in Leaf (Fig. 4). 24 

 25 

Origin of phased alleles 26 

The phasing of the 16 expressed genes determined two to five haplotypes for each gene (Table S65). 27 

From sequence homology, the haplotypes were divided into two groups, namely, allele_A and allele_B in 28 

Table S65, respectively. The Allele_A was more homologous to the paralogous gene in the SPA genome 29 

compared to the SPE genome. On the other hand, Allele_B tended to have a higher identity to SPE genome 30 
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 10 

genes. The exceptions, for example, were Prupe.4G062600.1 and Prupe.4G063700.1 genes which had no 1 

paralogous sequences in SPE genome (Table S21). In the 12 genes located in chromosome 4, SN seedlings 2 

always had two allele_As, meanwhile, the SW seedlings had one allele_A (derived from paternal C. 3 

itosakura) and another allele (allele_B) derived from maternal ‘Somei-yoshino’ (Table S65). For genes 4 

located on another chromosome, the heterozygosityte of allele_A and Allele_B was observed (Table S65). 5 

 6 

Discussion 7 

 8 

Characteristics of gene expression in the hybrid seedlings of ‘Somei-yoshino’ and C. itosakura 9 

Here, we performed a comprehensive gene expression analysis of hybrid seedlings of ‘Somei-yoshino’ 10 

and C. itosakura based on three reference genomes (Verde et al. 2017; Wang et al. 2020; Shirasawa et al. 11 

2019). The phased ‘Somei-yoshino’ genomes, which are rich in sequence and structural polymorphisms 12 

derived from two ancestral species, aided in the mapping of hybrid seedling RNA-seq data. However, the 13 

assembly and annotation of this genome are still first versions, and the gap-free chromosome length is 14 

shorter compared with that of other plant genomes (Shirasawa et al. 2019, 2021). Therefore, the genomes 15 

of peach and closely related sweet cherry with updated assemblies and annotations were added to the 16 

analysis. The peach genome is well re-sequenced and annotated and has a wealth of database information 17 

applicable to GO analysis tools, such as AgriGO and GenFam. The results for mapping and the number of 18 

expressed genes were reflected as the characteristics of the three references. Although the mapping rate to 19 

the ‘Somei-yoshino’ genomes was high (Table S31), the number of DEGs annotated with GO terms was 20 

higher in peach and sweet cherry genome analyses (data not shown). Through three referencing functional 21 

analyses (DEG annotations, enrichment analyses for the GO term and gene family), we consistently 22 

identified the gene expression features of the cherry hybrid seedlings, that is, an evidence of significant up-23 

regulation of the expression of genes associated with defense response in the SW seedlings. On the other 24 

hand, a decreased gene expression in the growth failure seedlings was characterized by photosynthesis-25 

related genes. 26 

 27 

High expression of defense-related genes in the SW hybrid seedlings 28 

Various PR genes associated with plant defense against pathogens (van Loon et al. 2006) were found 29 

in the up-regulated DEG list specified in the growth failure seedlings. In particular, PR1 homologous to 30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 11 

Arabidopsis basic PR1-like genes was detected as a major up-regulated DEG of SW seedlings in every 1 

analyses. PR1 is expressed by pathogen infection and associated with plant defense (van Loon et al. 2006). 2 

Another group of PR protein PR5, also referred as TLP, has also been indicated to participate in pathogen 3 

resistance (van Loon et al. 2006). The involvement of these PR1 and PR5 genes in the defense response 4 

has also been shown in peach (Sherif et al. 2012). Bet v1 family gene, a member of PR10, is also associated 5 

with plant defense (Liu and Ekramoddoullah 2006). The pathogen responsible for the expression of PR10 6 

genes was also identified in several Rosaceae species (apples: Pühringer et al. 2000; Ziadi et al. 2001, 7 

peach: Zubini et al. 2009, plum: El-kereamy et al. 2009). They may be paralogs to Bet v1 genes identified 8 

in our DEG list. 9 

The NB-LRR gene CYE_r3.1SPE4_g004570.1 was identified as the most up-regulated DEG in the 10 

‘Somei-yoshino’ SPE genome. NB-LRR, which triggered an autoimmune response in Arabidopsis and rice, 11 

was assumed to promote the participation of other defense-related genes (Bomblies et al. 2007; Yamamoto 12 

et al. 2010). Although several genes having LRR domain were significantly up-regulated in the SW 13 

seedlings, the NB-LRR gene family exhibited no substantial enrichment in the peach genome referencing 14 

analysis (7/558 genes, FDR = 0.927; not significant in the GenFam result). In addition, paralog gene of 15 

CYE_r3.1SPE4_g004570.1 in peach did not become DEG (data not shown). Additional consideration is 16 

needed to determine whether LRR-NB triggers growth failure in flowering cherries. Meanwhile, other 17 

RLKs, namely, CRK and CRRSP, were also found in SW up-regulated DEGs. These genes are also 18 

associated with pathogen resistance and cell death in Arabidopsis (Acharya et al. 2007; Yadeta et al. 2017) 19 

and in apples responding to fungal inoculation (Zuo et al. 2020). High expressions of genes associated with 20 

oxidation-reduction, such as GST, Cyt_P450, and 2OG-FeII, were also found in the SW seedlings. These 21 

genes are involved in the detoxification of peroxides and are highly expressed during the immune response 22 

in plants (Mauch and Dudler 1993; Wagner et al. 2002). Therefore, GST and Cyt_P450 are occasionally 23 

used as indicators of immune responses in Arabidopsis and rice hybrid inviability (Alcázar et al. 2009; 24 

Yamamoto et al. 2010). The high expression of these series of defense-related genes without pathogen 25 

inoculation strongly indicates that an autoimmune response also occurs in the hybrid seedlings of flowering 26 

cherry. 27 

The DEG list included several transcription factors called WRKYs. The WRKYs regulate various 28 

biological processes, several of which are highly expressed upon pathogen infection, and up- or down-29 

regulate the expression of themselves, other transcription factors, and downstream defense-related genes 30 
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 12 

(Rushton et al. 2010; Chen et al. 2019). GenFam analysis showed that WRKY domains were significantly 1 

enriched in SW seedlings, where 9 out of 93 genes were detected as up-regulated DEGs. Among these 2 

genes, WRKYs with high homology to Arabidopsis WRKY40, WRKY70, and WRKY75 were 3 

remarkably up-regulated in the SW seedlings. AtWRKY70 increases the PR gene expression and regulates 4 

plant defense and senescence through salicylic acid (SA) mediated pathways (Li et al. 2004, 2006; Ülker 5 

et al. 2007). Strawberry FaWRKY1 is homologous to AtWRKY75, highly expressed upon pathogen 6 

infection, and associated with the accumulation of peroxides and increased GST expression (Encinas-7 

Villarejo et al. 2009). Meanwhile, AtWRKY40 is also associated with PTI MAMP-triggered immunity but 8 

suppresses the resistance-like feedback response (Xu et al. 2006; Birkenbihl et al. 2017). The upward 9 

expression of the series of defense-related genes may be coordinated by these transcription factors. 10 

The excess of these defense responses probably resulted in the reduction of other physiological 11 

activities (Tian et al. 2003; van Hulten et al. 2006). Various gene families, including LAC17, were 12 

significantly suppressed in the SW seedlings. Photosynthesis-related GO terms also showed significant 13 

enrichment in the down-regulated DEGs of SW seedlings. The up-regulation of the defense-related genes 14 

and the decrease in bioactivities strongly suggested that autoimmune response triggers the growth arrest in 15 

hybrid cherry seedlings, as shown in previous studies. 16 

 17 

Gene expression in different seedling parts 18 

Quantitative PCR is often used to quantify and validate the expression of genes of interest. However, 19 

in this method, the number of genes to be tested is limited in labor. Thus, we We performed additional 20 

RNA-seq on different parts of the SW seedlings to identify the expression site of the overall defense-related 21 

genes described above. The results showed that the increased expression of genes related to defense 22 

response consistently occurred in the hypocotyl. The comprehensive analysis further captured a site-23 

specific gene expression that was not found in the comparisons of whole plant of SN and SW seedlings. 24 

Decreased cell division or differentiation-related gene expression was confirmed in the leaf samples. The 25 

growth failure of hybrid seedlings in flowering cherry is characterized by the absence of further 26 

development and differentiation of shoots after first true leaf expansion. Therefore, cell division-related 27 

processes are expected to be inhibited in shoot apical meristems. For example, wheat type II necrosis was 28 

characterized by a remarkable reduction of cell division in crown tissues (Mizuno et al. 2011). A decrease 29 

in cell cycle-related gene expressions was also observed in the crown tissues of wheat SGA line, in which 30 
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shoot growth stopped after the appearance of the second or third leaf (Hatano et al. 2012). The seedling 1 

phenotype observed in necrotic cherry seedlings was similar to the morphological characteristics in the 2 

SGA wheat. 3 

The SW seedling-specific enrichment of defense-related genes was observed especially in the 4 

hypocotylHypo, just below the shoot apex. This result may be related to growth arrest, but the detailed 5 

mechanism is still unknown. A sampling that is more specific to the seedling parts, such as the shoot apex 6 

alone, and differential time sampling will be useful in elucidating the growth failure mechanism. 7 

Furthermore, the concentration of certain plant hormones, such as abscisic acid, SA, and jasmonic acid, 8 

acting as signaling pathways through defense response, peroxide accumulation, and morphological 9 

observation of cell division in the shoot apex will be required. 10 

 11 

Candidate genes for trigger of defense response 12 

A locus involved in seedling necrosis was mapped to the candidate region of LG4 in our previous fine 13 

mapping (Tsuruta and Mukai 2019). In the peach genome, the region expanded by approximately 240 Kb 14 

with 45 transcribable genes, but whether it was the causative gene was unclear. The candidate region 15 

included several RLKs and genes with the LRR domain. Although several of these genes were highly 16 

homologous (86%–88%) to CYE_r3.1SPE4_g004570.1, which was the most significant up-regulated 17 

DEG in the ‘Somei-yoshino’ genome referencing analysis, they were never determined to be DEGs (e.g., 18 

Prupe.4G062600 and Ppe4G063700; data not shown). Two genes in the candidate region were identified 19 

as minor DEGs (Prupe.4G060400 and Prupe.4G064100), but their functions are unknown. In addition, 20 

CYE_r3.1SPE4_g004570.1 was located outside the candidate region. Several gaps remained in the 21 

candidate region of the ‘Somei-yoshino’ genome sequence and aligning the region with the SPE and SPA 22 

genomes or genomes in closely related species was difficult (Table S21; Tsuruta and Mukai 2019). These 23 

features suggest the presence of structural polymorphisms in the genome sequences of the candidate region. 24 

The genome region of RLKs frequently highly varied, including copy number variants (Bergelson et al. 25 

2001; Chae et al. 2014). In the case of rice hybrid breakdown, the comparison of the sequences of causative 26 

NB-LRR clusters between homologous chromosomes was difficult (Yamamoto et al. 2010). Thus, the 27 

genome sequence of ‘Somei-yoshino’ in the candidate region will also need to be re-sequenced carefully.  28 

The estimation of the allele origin of several genes located on the HIs-1 candidate region is also 29 

suggestive. In the SN seedlings, both alleles were derived from C. itosakura, whereas in SW seedlings, 30 
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heterozygotes of C. itosakura- and C. speciosa-derived alleles were observed. This genotype is compatible 1 

with the seedling inviability, which was thought to be an incompatibility between C. speciosa, an ancestor 2 

of ‘Somei-yoshino’, and C. itosakura, the cross parent (Tsuruta and Mukai 2015); here, a causable locus 3 

was mapped to the SPE genome. These results reminded us that a candidate CYE_r3.1SPE4_g004570.1 4 

was located on the SPE genome and suggested that the NB-LRR remains the most likely candidate for 5 

triggering hybrid incompatibility in flowering cherries. Otherwise, from the complex origin of ‘Somei-6 

yoshino’ (not a simple F1 hybrid of the two ancestor species but also a line derived from complicated crosses 7 

discussed in Tsuruta et al. 2017), possibly, the partial genome introgression of different lineages resulted in 8 

an autoimmune response of defense-related genes due to epistasis disruption. The causative gene of 9 

seedling necrosis may still need to be discussed. On the other hand, the up-regulation of defense-related 10 

gene expression probably commonly leads to hybrid weakness and hybrid breakdown, which is a 11 

phenomenon observed not only in herbal plants but also in woody species. Diversified defense-related 12 

genes may also contribute to the maintenance of speciation. 13 
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Table and Figure Legends 26 

 27 

Table 1 Gene expression number in each referenced genome for the normal (SN), necrotic weak growth 28 

(SW), and wild cherry (CJ) seedlings. 29 

Table 2 Annotations of defense-related DEGs listed in the top 50 up-regulated DEGs in the necrotic hybrid 30 
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 21 

seedlings identified by TCC analysis, referencing the peach genome and their expression patterns in 1 

each part of the seedlings. 2 

   DEGs were represented with log fold change (M value) and FDR values (Q value) on the 3 

comparison of normal seedling (SN) vs. SW, SN vs. true leaves (Leaf), SN vs. cotyledons (Coty), and 4 

SN vs. hypocotyl (Hypo). Non-significant values (FDR > 0.05) were grayed out. 5 

 6 

Fig. 1 (A) The normal-growth (SN) and (B) necrotic weak-growth phenotypes (SW) of the hybrid seedlings 7 

approximately two weeks after germination. (C) Sampling scheme of each part of the SW seedlings. 8 

Leaf: true leaves, Coty: cotyledons, Hypo: hypocotyl, Root: root. 9 

Fig. 2 Significantly enriched GO terms detected by goseq in the up- (A) and down-regulated DEGs (B) of 10 

the peach (Ppe), sweet cherry (Pav), and ‘Somei-yoshino’ (Pye) genome referencing analysis. 11 

Significant enrichment of biological process (BP), cell component (CC), and molecular function (MF) 12 

GO terms was represented with a q value (FDR) and the number of DEGs (dot size). The GO terms 13 

“defense response” and “response to biotic stimulus” are indicated by red arrows. 14 

Fig. 3 An example of gene expression pattern on each seedling part. The normalized gene expression levels 15 

for eight up-regulated and four down-regulated SW-specific DEGs were calculated by TMM method 16 

using TCC-GUI pipeline. SN: normal-growth seedlings, Coty: cotyledons, Leaf: true leaves, Hypo: 17 

hypocotyl, Root: root. 18 

Fig. 4 A heatmap for the enrichment pattern of biological process GO terms in the comparison of normal 19 

seedlings (SN) vs. cotyledons (Coty), SN vs. true leaves (Leaf), and SN vs. hypocotyl (Hypo). 20 

Significant enrichment terms were represented with the Z score for up-regulation (red) and down-21 

regulation (blue) detected by PAGE analysis. Several GO terms related to plant defense response (red), 22 

photosynthesis (blue), and cell cycles (orange) are indicated by arrows. 23 

 24 

Supplementary Table S1 Primer sequences for the quantitative RT-PCR. 25 

Supplementary Table S21 Genes used for the haplotype allele sequence detection and their paralogs in 26 

the phased SPA and SPE genomes of ‘Somei-yoshino’. 27 

Supplementary Table S32 Summary of the sequencing data and mapping rates to the reference genomes 28 

of each sample. 29 

Supplementary Table S43 List of top 50 up-regulated DEGs and their annotations in the necrotic hybrid 30 
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seedlings identified by TCC analysis referencing the Prunus persica genome v2.0.a1. 1 

Supplementary Table S54 Significant enrichment of gene family in the up- and down- regulated DEGs 2 

detected by GenFam. 3 

Supplementary Table S65 Identities of the phased allele and its paralogous sequences on the SPA and 4 

SPE genomes of ‘Somei-yoshino’. 5 

 6 

Supplementary Fig. S1 Significantly up- and down-regulated differentially expressed genes (DEGs) and 7 

detection of weak growth seedling (SW)-specific expression genes in the peach (A–D), sweet cherry 8 

(E–H), and ‘Somei-yoshino’ genome referencing analyses (I–L). TCC-GUI pipeline was used for the 9 

identification of DEGs in the comparison of wild cherry seedlings (CJ) vs. normal growth seedlings 10 

(SN) (A, E, and I), CJ vs. SW (B, F, and J), and SN vs. SW (C, G, and K). Of these DEGs, those that 11 

were common to CJ vs. SW and SN vs. SW but not present in CJ vs. SN (squared) were determined as 12 

SW-specific DEGs (D, H, and L). Several characteristic DEGs, such as PR1, PR5, LRR-RLK, CRK, 13 

WRKY, and LAC17, listed among the top significant DEGs (Table 2) are indicated by arrows. 14 

Supplementary Fig. S2 Relative expression levels of SW to SN seedlings in three genes evaluated by 15 

quantitative RT-PCR (A) and its correlation to the M-values obtained from RNA-seq analysis (B). The 16 

relative expression levels are represented in mean value with confidence intervals (error bars). 17 

Supplementary Fig. S32 Significantly enriched GO terms in the up- (A) and down-regulated (B)DEG list 18 

detected by SEA analysis using AgriGO v2. The GO terms were represented with q value (FDR) and 19 

the number of DEG (dot size). The terms “defense response” and “response to biotic stimulus” are 20 

indicated by red arrows. 21 

Supplementary Fig. S43 Significantly enriched GO terms detected by AgriGO v2 PAGE analysis. The 22 

significant enrichment for up- (Z score > 0) and down-regulation (Z score < 0) was represented with 23 

FDR and the gene number (dot size). The terms “defense response” and “response to biotic stimulus” 24 

are indicated by red arrows. 25 

Supplementary Fig. S54 Venn diagrams of significant DEGs detected in the comparison of the normal 26 

seedling (SN) and each seedling part, cotyledons (Coty), true leaves (Leaf), and hypocotyl (Hypo). 27 

Supplementary Fig. S65 Heatmaps of the enrichment GO terms for cell component (A) and molecular 28 

function (B) in the comparison of the normal seedlings (SN) vs. cotyledons (Coty), SN vs. true leaves 29 

(Leaf), and SN vs. hypocotyl (Hypo). The significant enrichment terms were represented with Z scores 30 
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for the up- (red) and down-regulation (blue) detected by PAGE analysis. 1 

 2 
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Table 1 Gene expression number in each referenced genome for the normal (SN), necrotic weak growth (SW), 

and wild cherry (CJ) seedlings. 

Reference genome 
Total number of 

transcribable gene 

Number of gene expressed in 

any sample SN SW CJ all samples 

Peach 47,089 22,218 20,790 20,771 20,594 19,148 (86.2%) 

Sweet cherry ‘Tieton’ 40,338 31,181 28,828 28,690 28,483 26,195 (84.0%) 

‘Somei-yoshino’ 95,076 70,746 63,483 63,896 62,580 55,749 (78.8%) 

CYE_SPA 48,280 36,392 33,097 33,073 31,470 28,484 (78.3%) 

CYE_SPE 46,796 34,354 30,386 30,823 31,110 27,265 (79.4%) 

 

 

Tables Click here to access/download;Table;MT_Tables.docx
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Table 2 Annotations of defense response-related DEGs listed in the top 50 up-regulated DEGs in the necrotic hybrid seedlings (SW) identified by TCC analysis, referencing the 

peach genome and their expression patterns in each part of the seedlings. 

Rank Gene name BLAST search result Symbol 
SN vs. SW SN vs. Coty SN vs. Leaf SN vs. Hypo 

M value Q value M value Q value M value Q value M value Q value 

1 Prupe.8G152900 AT2G14580 | basic pathogenesis-related protein 1 PR1 8.87 6.40e-42 3.53 7.94e-04 7.35 1.50e-14 10.1 1.09e-40 

4 Prupe.8G011000 
AT2G36690 | 2-oxoglutarate and Fe(II)-dependent 

oxygenase superfamily protein (2OG-FeII) 
2OG-FeII 8.04 3.24e-21 3.93 1.73e-05 5.06 4.09e-06 9.00 6.33e-10 

10 Prupe.5G094000 AT4G11650 | osmotin 34; thaumatin-like protein TLP 6.05 1.02e-13 2.36 0.0815 5.17 0.0202 8.43 1.81e-27 

15 Prupe.1G054800 AT2G29420 | glutathione S-transferase tau 7 GST 3.69 2.10e-12 1.50 0.0690 2.47 0.0040 4.72 4.53e-14 

18 Prupe.4G263100 AT1G52800 | 2OG-FeII 2OG-FeII 3.88 8.50e-12 2.80 0.0278 1.44 0.207 5.15 1.75e-06 

20 Prupe.8G210600 AT2G29420 | glutathione S-transferase tau 7 GST 6.11 1.02e-11 3.81 0.0010 3.87 0.0043 7.74 6.86e-09 

23 Prupe.4G027700 AT4G05200 | cysteine-rich RLK 25 CRK 3.75 3.29e-11 0.28 1 2.68 0.0013 5.31 2.39e-13 

26 Prupe.1G362600 
AT1G77280 | Protein kinase protein with adenine 

nucleotide alpha hydrolases-like domain 
LRR-RLK 5.40 3.72e-11 6.46 6.80e-05 3.90 0.0259 7.31 5.05e-07 

29 Prupe.1G054900 AT3G09270 | glutathione S-transferase TAU 8 GST 3.71 9.56e-11 1.57 0.0795 2.51 0.0080 4.74 5.47e-13 

31 Prupe.4G262800 AT1G52800 | 2OG-FeII 2OG-FeII 5.92 1.21e-10 4.19 3.31e-04 6.16 5.12e-06 7.15 7.67e-18 

32 Prupe.2G095000 AT2G36690 | 2OG-FeII 2OG-FeII 5.97 1.44e-10 4.42 0.0693 2.74 0.281 6.67 2.07e-05 

33 Prupe.3G110300 AT3G22060 | RLK-related family protein CRK 3.59 1.56e-10 1.50 0.308 3.06 4.45e-04 5.47 1.19e-16 

35 Prupe.1G129000 PRU1_PRUAR Major allergen Pru ar 1 Bet v1 5.75 2.06e-10 3.73 0.0011 2.86 0.0773 7.47 9.55e-06 

37 Prupe.1G387500 AT4G31940 | cytochrome P450, 82C4 Cyt_P450 2.89 2.25e-10 2.13 0.0354 2.14 0.179 2.92 8.11e-07 

40 Prupe.6G094400 PRU1_PRUAR Major allergen Pru ar 1 Bet v1 3.21 3.84e-10 2.51 7.15e-06 1.42 0.0559 4.88 7.85e-07 

41 Prupe.7G102900 AT2G30830 | 2OG-FeII 2OG-FeII 3.97 4.28e-10 0.63 1 1.43 0.438 5.44 1.92e-08 

42 Prupe.1G393100 AT1G80840 | WRKY DNA-binding protein 40 WRKY40 6.36 5.07e-10 3.01 0.124 3.10 0.0531 7.83 4.53e-09 

43 Prupe.8G210500 AT2G29420 | glutathione S-transferase tau 7 GST 5.92 5.35e-10 1.83 0.265 2.82 0.0452 7.15 9.27e-08 

45 Prupe.1G127300 AT1G24020 | MLP-like protein 423; Bet v1-like Bet v1 3.42 7.30e-10 1.18 0.154 0.92 0.659 4.78 3.32e-05 

47 Prupe.7G103000 AT2G30830 | 2OG-FeII 2OG-FeII 4.12 1.27e-09 0.85 1 1.57 0.452 5.67 4.15e-08 

50 Prupe.1G515800 
AT1G35710 | Protein kinase family protein with 

leucine-rich repeat domain 
LRR-RLK 4.37 2.91e-09 0.31 1 4.47 2.27e-04 5.55 1.58e-12 

DEGs were represented with log fold change (M value) and FDR values (Q value) on the comparison of normal seedling (SN) vs. SW, SN vs. true leaves (Leaf), SN vs. 

cotyledons (Coty), and SN vs. hypocotyl (Hypo). Non-significant values (FDR > 0.05) were grayed out. 

 



 

  

Fig. 1 (A) The normal-growth (SN) and (B) necrotic weak-growth phenotypes (SW) of the hybrid seedlings 

approximately two weeks after germination. (C) Sampling scheme of each part of the SW seedlings. Leaf: true 

leaves, Coty: cotyledons, Hypo: hypocotyl, Root: root. 

 

 

 

 

Fig. 2 Significantly enriched GO terms detected by goseq in the up- (A) and down-regulated DEGs (B) of the 

peach (Ppe), sweet cherry (Pav), and ‘Somei-yoshino’ (Pye) genome referencing analysis. Significant enrichment 

of biological process (BP), cell component (CC), and molecular function (MF) GO terms was represented with a 

q value (FDR) and the number of DEGs (dot size). The GO terms “defense response” and “response to biotic 

stimulus” are indicated by red arrows. 
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Fig. 2 (Continued) 
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Fig. 3 An example of gene expression pattern on each seedling part. The normalized gene expression levels for 

eight up-regulated and four down-regulated SW-specific DEGs were calculated by TMM method using TCC-GUI 

pipeline. SN: normal-growth seedlings, Coty: cotyledons, Leaf: true leaves, Hypo: hypocotyl, Root: root. 
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Fig. 4 A heatmap for the 

enrichment pattern of 

biological process GO 

terms in the comparison 

of normal seedlings (SN) 

vs. cotyledons (Coty), 

SN vs. true leaves (Leaf), 

and SN vs. hypocotyl 

(Hypo). Significant 

enrichment terms are 

represented with the Z 

score for up-regulation 

(red) and down-

regulation (blue) detected 

by PAGE analysis. 

Several GO terms related 

to plant defense response 

(red), photosynthesis 

(blue), and cell cycles 

(orange) are indicated by 

arrows. 
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