1	Redistribution of the soil ¹³⁷ Cs inventory through litter and
2	sediment transport on a hillslope covered by deciduous forest in
3	Fukushima, Japan
4	
5	Authors
6	Tomoki Oda ^{1, 2*} , Norifumi Hotta ² , Satoru, Miura ¹ , Izuki Endo ³ , Keitaro Tanoi ² , Chris S.
7	Renschler ⁴ , Nobuhito Ohte ⁵
8	
9	1. Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest
10	Products Research Institute, Ibaraki 305-8687, Japan
11	
12	2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi,
13	Bunkyo-ku, Tokyo 113-8657, Japan
14	
15	3. School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
16	
17	4. Department of Geography, University at Buffalo, The State University of New York, 116
18	Wilkeson Quad, Buffalo NY 14261, USA
19	
20	5. Department of Social Informatics Graduate School of Informatics, Kyoto University, Kyoto
21	606-8501, Japan
22	
23	*Corresponding author: Tomoki Oda
24	e-mail: tomokioda@affrc.go.jp
25	

26 Abstract

The long-term behavior of radiocesium (¹³⁷Cs) activity concentrations in forest ecosystems and 27 their downstream impacts remain important issues in the deciduous broadleaf forests of 28 Fukushima, Japan following the Fukushima Daiichi Nuclear Power Plant accident. To predict 29 ¹³⁷Cs cycling and discharge in the forest ecosystem, it is important to understand the spatial 30 dynamics of the ¹³⁷Cs inventory and transport along hillslopes. Therefore, we observed the 31 spatial distribution of the ¹³⁷Cs inventory and ¹³⁷Cs transport via sediment and litter of a 32 deciduous forest hillslope in Fukushima, Japan in 2016 and 2017 and examined how the spatial 33 distribution of ¹³⁷Cs inventory was formed using a mass balance model. In 2017, the ¹³⁷Cs 34 activity concentration was significantly greater in the downslope riparian area (455 kBq/m²) 35 than in the upslope ridge area (179 kBq/m²). Annual ¹³⁷Cs transport within litter and sediment 36 contributed < 0.5% to the current ¹³⁷Cs inventory, and cannot explain the current spatial 37 variation of ¹³⁷Cs inventory on the hillslope. The mass balance model results showed that if the 38 initial ¹³⁷Cs deposition was distributed uniformly in 2011, the spatial distribution of the hillslope 39 ¹³⁷Cs inventory was influenced mainly by the movement of leaf litter with a high ¹³⁷Cs activity 40 41 concentration.

42

^{Keywords: ¹³⁷Cs inventory, Forest hillslope, Deciduous forest, Litter transport, Soil erosion}

46 **1. Introduction**

The March 2011 accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) led to the 47 release of a large amount of radioactive material and fallout over a forested area covering 48 approximately 70% of Fukushima Prefecture, Japan. One of the radioactive materials released, 49 radiocesium (¹³⁷Cs), has a long half-life of approximately 30 years and therefore has long-term 50 effects on ecosystems including forests. Studies have illustrated that ¹³⁷Cs was either directly 51 deposited on the forest floor or transported via throughfall, stemflow, or litterfall (Kato et al., 52 2017, 2019a). Most ¹³⁷Cs in the forest floor was adsorbed onto the soil surface within the 53 uppermost 10 cm of soil (Nakanishi et al., 2014; Takahashi et al., 2015, 2018); some of this 54 ¹³⁷Cs was incorporated into ecosystem cycles (Hashimoto et al., 2012; Murakami et al., 2014; 55 Imamura et al., 2017), and less than 1–2% of the total deposited ¹³⁷Cs flowed out of forested 56 watersheds (Iwagami et al 2019; Taniguchi et al., 2019; Nakanishi et al., 2021). Because most 57 ¹³⁷Cs remained in the forest, the determination of its spatial and temporal dynamics, its long-58 term runoff and sedimentation redistribution process, and its impacts on ecosystems in general 59 is essential. 60

According to studies of ¹³⁷Cs dynamics in forested areas near Chernobyl, Ukraine, the majority of ¹³⁷Cs released from that accident remained in the organic and mineral soil layers of the forest floor for decades (Shcheglov et al., 2001; Konoplev et al., 2016). The accumulation of ¹³⁷Cs in the surface soil of the Fukushima-area forests is similar to that around Chernobyl

65	(Pumpanen et al., 2016; Takahashi et al., 2018). Thus, most of the ¹³⁷ Cs is expected to remain
66	in the surface soil well into the future. However, the climatic and geographic conditions of
67	Fukushima watersheds, which have steep slopes and high precipitation, differ considerably
68	from those of Chernobyl (Konoplev et al., 2016). The geographic and climatic characteristics
69	of forested areas in Japan may result in greater surface transport of ¹³⁷ Cs along hillslopes to
70	valley bottoms via litter movement and soil redistribution. Previous studies have primarily
71	focused on ¹³⁷ Cs transport immediately following the accident, and lateral movement of ¹³⁷ Cs
72	along the forest floor via soil erosion measured in hardwood and cedar forest slope plots
73	accounted for less than 3% of the initial ¹³⁷ Cs deposited (Yoshimura et al., 2015: Niizato et al.,
74	2016; Wakiyama et al., 2019; Onda et al., 2020a). The contribution of leaf litter movement to
75	the redistribution of ¹³⁷ Cs on slopes has been reported (Koarashi et al., 2014; Sakai et al., 2016;
76	Onda et al., 2020b). However, few studies into the effects of ¹³⁷ Cs movement on the spatial and
77	temporal redistribution of ¹³⁷ Cs inventory have been conducted based on the measurement of
78	transported sediment and litter at the hillslope scale.
70	To understand the process of $137C_{0}$ redictribution on a hilldlong it is processery to consider

To understand the process of ¹³⁷Cs redistribution on a hillslope, it is necessary to consider temporal changes from the ¹³⁷Cs fallout event to the present. The dominant forest type in the area most strongly affected by the FDNPP accident is deciduous broadleaf forest (49.1% of the total forested area) (Hashimoto et al., 2012). In this deciduous broadleaf forest, most of ¹³⁷Cs was attached to surface materials on the forest floor at the time of ¹³⁷Cs deposition in 2011

84	(Kato et al., 2017; Onda et al., 2020b), and ¹³⁷ Cs activity concentrations in the ground litter and
85	surface soil at the time were likely higher than their current levels. Furthermore, the downslope
86	movement of leaf litter is greater in deciduous broadleaf forests than in coniferous forests (Hart
87	et al., 2013), affecting the material cycles the forest ecosystem (Fisher, 1977; Tsukamoto, 1991;
88	France, 1995; Sakai et al., 2016) as well as erosion on forest slopes (Sala, 1988; Larsen et al.,
89	1999; Wakahara et al., 2008; Ghahramani et al., 2011). In the deciduous forests of Fukushima,
90	December through March is the deciduous season, and at the time of the FDNPP accident, most
91	of the ¹³⁷ Cs was deposited directly on the forest floor without being intercepted by the forest
92	canopy, and the subsequent movement of high contaminated litter and surface soil along the
93	hillslope might have led to significant redistribution of ¹³⁷ Cs along the forested hillslope.
94	The objective of this study was to clarify the spatial variation of ¹³⁷ Cs inventory in the forest
95	hillslope and examine the influence of lateral movements of sediment and litter down a slope
96	on the temporal and spatial distributions of the soil ¹³⁷ Cs inventory in a deciduous forest. We
97	established a hillslope plot extending from a ridge to the adjacent valley bottom on a steep slope
98	covered with deciduous forest and measured the spatial distribution of soil ¹³⁷ Cs as well as ¹³⁷ Cs
99	transport through lateral movements of sediment and litter. Then, we evaluated the origin of
100	spatial variations in the ¹³⁷ Cs inventory on the slope and assessed the effects of lateral transport

103 **2. Methods**

104 **2.1 Study site**

This study was conducted in the forested watershed of the upper Kami-Oguni River in 105 Ryozencho, Date, Fukushima Prefecture, Japan (37°43' N, 140°34' E) (Figure 1a), about 50 km 106 northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP). The initial deposition of 107 ¹³⁷Cs in this region was 236 kBq/m² (Kato et al., 2019b). From 1981 to 2019, the annual mean 108 precipitation was 1,322 mm and the annual mean temperature was 10.1°C (Japan 109 Meteorological Agency). 110 We set up a hillslope plot $(20 \text{ m} \times 54 \text{ m})$ extending from the riparian zone to the ridge (Figures 111 1b, 2a). This slope plot was set up in 2012 to quantify ¹³⁷Cs input into the forest and cycles 112 between trees, and information on litterfall and trees has been accumulated (Endo et al., 2015). 113 114 The altitude along the uniform hillslope slope ranged from 351 to 390 m and the mean slope angle was 32.7°. This area is covered by deciduous trees, mainly consisting of oaks (Quercus 115 spp.) and maples (Acer spp.), with a stem density of 1,300 stems/ha. 116

117

118 2.2 Observations

119 **2.2.1. Soil sampling**

Soil samples excluding leaf litter were collected at 30 points along the hillslope using a 5.5-cmdiameter soil core sampler (DIK-110C, Daiki Rika Kogyo, Japan) to a depth of 30 cm (Figure

122	1b). The hillslope plot was divided into six subplots: the streamside (Plot 1, 68 m ²), bottom
123	slope (Plot 2, 166 m ²), lower slope (Plot 3, 195 m ²), middle slope (Plot 4, 228 m ²), upper slope
124	(Plot 5, 276 m ²), and ridge (Plot 6, 144 m ²), at intervals of approximately 10 m. Five soil
125	samples were collected in each subplot on November 4, 2017 (Figure 1b, c). Within each plot,
126	soil samples were collected at the same elevation level, but in plot 6, soil samples were collected
127	along the ridge and therefore resulting in a difference in elevation.

129 **2.2.2.** Leaf litter and other transported material on the slope surface

To measure the litter fall amount and its 137 Cs activity concentration, we installed five funnelshaped litter traps (opening diameter, 0.5 m²) on the slope surface (Figure 2b). Litter was collected from the traps every 2–3 months from October 2015 to December 2016. Leaf litter on the ground was collected from the litter layer in Plot 2, Plot 3, Plot 4 and Plot 5 with three replicates in December 2016.

Three sediment traps (ST1, ST2, and ST3; Figure 2c, d) were installed along the hillslope to measure the material and ¹³⁷Cs transport rates (Figure 1b, c). The structure of each sediment trap (width, 1.0 m; depth, 0.2 m; height, 0.2 m) was similar to that of traps used in previous studies (Ghahramani et al., 2011; Imaizumi et al., 2019), including a vertical wire mesh secured by wooden piles at both sides and at the downslope end. A synthetic sheet was placed within the wire mesh and on the adjacent ground to trap fine soil and litter (Figure 2c, d). Nearly all of

141	the transported material was litter, with fine soil particles attached to the litter. Trapped material
142	was collected at intervals of 1–3 months from September 2016 to March 2018.

144 **2.3 Analyses**

145	2.3.1. Analyses of ¹³⁷ Cs activity concentration in litter, soil, and other transported material
146	Samples of litter and other transported material were dried in an oven at 60°C for at least 48 h.
147	The soil core samples were divided into 1-cm increments to a depth of 10 cm, 2-cm increments
148	for depths of 10-20 cm, and 5-cm increments for depths of 20-30 cm. After drying, the dry
149	weight of each sample was measured, and the samples were crushed finely and packed into 20-
150	mL polypropylene containers. The ¹³⁷ Cs activity concentration of each sample was measured
151	over 20 min using a well-type NaI(Tl) scintillation automatic gamma counter (2480 WIZARD2,
152	PerkinElmer Japan Co., Ltd., Yokohama, Japan), following the manufacturer's protocol. The
153	¹³⁷ Cs activity measurement error was within 5% and 10% for the litter and soil samples,
154	respectively. Measurements were corrected for the sampling day.

155

156 2.3.2. ¹³⁷Cs inventory, ¹³⁷Cs deposition via litterfall, and lateral ¹³⁷Cs movement on the
157 forest floor

The total ¹³⁷Cs activity to a depth of 30 cm was assumed to equal the total ¹³⁷Cs inventory in the soil, as previous studies have demonstrated that negligible ¹³⁷Cs is present below a depth of 160 20 cm in the soil of broadleaf forests (Nakanishi et al., 2014; Takahashi et al., 2018). The annual litterfall amounts, LF [kg/m²/yr], for 2015 and 2016 were calculated as the sums of the average 161 observed litterfall amounts for each observation period from October to December 2015 and 162 from January to December 2016, respectively. The observation period for 2015 was shorter; 163 however, the litterfall amount recorded during the sampling period was treated as the annual 164 litterfall because more than 90% of the annual litter production on the hillslope occurs from 165 October to December (Endo et al., 2015). We calculated the annual volume-weighted ¹³⁷Cs 166 activity concentration, C_{LF} [kBq/kg], by dividing the annual ¹³⁷Cs input through litterfall, Q_{LF} 167 $[kBq/m^2/yr]$, by LF. 168

We calculated the annual material transport rate, TM [kg/m²/yr], from the annual material 169 transport amount observed from January to December in 2017 [kg/yr] and the contributing area 170 $[m^2]$, defined as the drainage area at each sediment trap location, as determined by topography. 171 We calculated the contributing areas for the sediment traps using a 2-m-mesh digital elevation 172 model and conducted geographic analysis using ArcGIS (ESRI Inc., Redlands, CA, USA). We 173 calculated the annual transport of 137 Cs, Q_{TM} [kBq/m²/yr], from the sediment traps by summing 174 the product of the material transport rate and the ¹³⁷Cs activity concentration [kBq/kg] for each 175 observation period. The volume-weighted mean ¹³⁷Cs activity concentration in transported 176 material, C_{TM} [kBq/kg], was calculated from Q_{TM} and TM. To compare the observed C_{TM} and 177 TM values in this study with those obtained in other areas, we calculated the entrainment 178

179 coefficient, *Sc* [m²/kg] (Yoshimura et al., 2015; Wakiyama et al., 2019; Onda et al., 2020a), 180 defined as the ¹³⁷Cs activity concentration in transported material per unit ¹³⁷Cs initially 181 deposited. A rainfall erosivity factor, *R* [MJ mm/ha h] was calculated to evaluate the impact of 182 rainfall intensity on *TM*. The *R* for a given period was calculated as follows:

183
$$R = \sum_{i=1}^{n} E_i I_{30i}$$
(1)

where E_i is the energy in rainfall (MJ/ha) and I_{30i} is the maximum half-hour rainfall intensity 184 (mm/h) for a storm (i) (Yoshimura et al., 2015; Wakiyama et al., 2019). In the forest, throughfall 185 intensity differs from open rainfall intensity due to the rainfall partitioning into an interception, 186 a throughfall, and a stemflow component. Previous studies, however, have indicated that the 187 intensity of open rainfall is proportional to the kinetic energy of throughfall including free 188 throughfall, drips, and splash water droplets (Nanko et al., 2008). The stemflow amount is 189 usually much smaller than throughfall (approximately 10% of the throughfall amount) (Endo 190 et al., 2015) and therefore it's effect is considered relatively small. Therefore, the rainfall 191 erosivity factor (R) is an acceptable indicator for erosion in the forest ground. 192

The transported material consisted of litter and sediment. We calculated the contribution rate of litter to *TM*, *p*, using $C_{TM}(t)$; the mean ¹³⁷Cs activity concentration in the leaf litter, $C_{litter}(t)$, assuming that $C_{litter}(t)$ was similar to $C_{LF}(t)$; and the mean ¹³⁷Cs activity concentration in the surface soil between depths of 0 to 1 cm, $C_{soil}(t)$ [kBq/kg], as shown below:

197
$$C_{TM}(t) = p \ C_{litter}(t) + (1-p) \ C_{soil}(t).$$
(2)

198 The contribution rate of litter transport to Q_{TM} , q, was described using TM and p, as follows:

$$Q_{TM}(t) = (p \ q \ C_{litter}(t) + (1 - p) \ (1 - q) \ C_{Soil}(t)) \ TM.$$
(3)

200

201 **2.3.3. Modeling ¹³⁷Cs transport along the forest floor**

We estimated how the initially deposited ¹³⁷Cs, $S_{initial}$ [kBq/m²], was redistributed on the hillslope using a mass balance model. Annual changes in the ¹³⁷Cs inventory, along with Q_{TM} from the ridge to the riparian area, were calculated for the 2011–2017 period. The contour lines in the subplots used in this study were generally parallel, and transported materials were assumed to move orthogonally with respect to the contour lines. The distance of each observation point from the ridge was calculated, and the average contribution area per unit width of each subplot was obtained.

Based on the topography of the slope, the areas around the sampling points in Plots 1 and 2 209 at the toe slope, where the average slope (12°) was distinctly gentler than at other points (34°) , 210 were defined as the deposition area (riparian area). The average distance from the ridge top 211 (averaged location of observation points in Plot 6) to the average location of an observation 212 point in Plot 1 was x_1 [m] (53.9 ± standard deviation: 3.9 m). Additionally, the source slope area 213 (slope area), including Plots 3, 4, and 5, and the source ridge area (ridge area), including Plot 6, 214 were identified. The boundaries between the riparian, slope, and ridge areas were the middle 215 points between Plots 2 and 3 and between Plots 5 and 6, respectively, with the respective 216

distances from the ridge top denoted x_2 [m] (42.2 ± 2.9m) and x_3 [m] (7.2 ± 2.4 m).

Redistribution of the ¹³⁷Cs inventory was assumed to be driven by lateral transport associated with sediment and litter movement over the ground surface, and fluctuations due to vertical movements in soil layers deeper than 30 cm were assumed to be negligible. The ¹³⁷Cs inventories of the riparian area, $S_{rip}(t)$, slope area, $S_{slope}(t)$, and ridge area, $S_{ridge}(t)$, over time *t* since 2011 (measured in years) were determined as shown below:

223
$$dS_{rip}(t) / dt = x_2 Q_{TM}(x_2, t) / (x_1 - x_2), \qquad (4)$$

224
$$dS_{slope}(t) / dt = (x_3 Q_{TM}(x_3, t) - x_2 Q_{TM}(x_2, t)) / (x_2 - x_3),$$
(5)

225
$$dS_{ridge}(t) / dt = -Q_{TM}(x_3, t).$$
 (6)

Sinitial was assumed to have fallen uniformly over the entire area in March 2011, i.e., Sinitial = 226 $S_{rip}(0) = S_{slope}(0) = S_{ridge}(0)$ for t = 0. Previous studies have suggested that the initial level of 227 ¹³⁷Cs deposition changes with elevation, and that canopy interception affects the initial spatial 228 distribution on the ground (Atarashi-Ando et al., 2015; Schaub et al., 2010). In the Fukushima 229 forest, although a relationship between elevation and air dose rate was found in a 0.6-km² 230 watershed with elevations ranging from 588 to 724 m, due to the large air dose rate at the 231 232 summit, no clear relationship was observed on the slopes with an elevation difference of 30-50 m from the middle ridge to the valley (Atarashi-Ando et al., 2015). In our study site, this effect 233 is assumed to be small because the difference in elevation from the middle ridge to valley was 234 only 40 m (350–390 m), and deciduous broadleaf trees covered nearly the entire slope. Sinitial 235

was estimated from the current area-weighted average ¹³⁷Cs inventory because the majority of $S_{initial}$ remained in the forest soil without being exported to streams (Ohte et al., 2016) and the ¹³⁷Cs inventory in tree trunks and branches was less than 10% (Murakami et al., 2019) in this study area.

The ¹³⁷Cs inventory at each sampling point was assumed to consist of three inventories: those of leaf litter, $S_{litter}(x_n, t)$; surface soil from 0 to 1 cm, $S_{soil}(x_n, t)$; and subsurface soil below 1 cm, $S_{subsoil}(x_n, t)$ [kBq/m²] (n = 1, 2, and 3) (Figure 3). All of $S_{initial}$ was assumed to adhere to litter or surface soil, as trees in the deciduous forest lacked leaves at the time of the accident, and therefore, most radionuclides were deposited directly onto the forest floor without canopy interception. The parameter indicating the adhesion rate to litter under initial conditions was denoted α .

247
$$\alpha S_{initial} = S_{litter}(x_n, 0), \tag{7}$$

248
$$(1-\alpha) S_{initial} = S_{soil}(x_n, 0), \tag{8}$$

249
$$S_{subsoil}(x_n, 0) = 0,$$
 (9)

250 where S_{litter} and S_{soil} contribute to lateral movement, whereas $S_{subsoil}$ is immobile.

251 $Q_{TM}(x_n, t)$ was determined as follows:

252
$$Q_{TM}(x_n, t) = C_{litter}(x_n, t) \times p \ TM(x_n, t) + C_{soil}(x_n, t) \times (1-p) \ TM(x_n, t).$$
(10)

The ground litter ¹³⁷Cs activity concentration at location *x* and time *t*, $C_{litter}(x_n, t)$ [kBq/kg], was calculated from the amount of leaf litter on the ground, $LG(x_n, t)$ [kg/m²], and $S_{litter}(x_n, t)$, as 255 follows:

256
$$C_{litter}(x_n, t) = S_{litter}(x_n, t) / LG(x_n, t),$$
 (11)

where $LG(x_n, t)$ was calculated using a constant decomposition rate, β , the litter contribution in $TM(x_n, t)$, p, and LF, as follows:

259
$$LG(x_n, t) = (1 - \beta) (LG(x_n, t-1) - p (TM(x_n, t) - TM(x_{n-1}, t)) + LF.$$
(12)

260 $LG(x_n, t)$ was calculated over 10 years before the initiation time of the model (March 2011), and the converged value was used as the initial value $(LG(x_n, 0))$. $TM(x_n, t)$ was calculated from 261 the relationship between observed TM and the contribution area in 2017 (Figure S3a). $TM(x_n,$ 262 t) for each area was assumed to be similar across all years. The annual precipitation (1222) 263 mm/yr) and maximum daily rainfall (108 mm/day) values from 2017 are comparable to the 264 average annual precipitation \pm standard deviation (SD) (1322 \pm 244 mm/yr) and maximum 265 rainfall ($120 \pm 62 \text{ mm/day}$) calculated from rainfall data collected at a nearby weather station 266 since 1981. In this model, TM is assumed to be that of continuous average rainfall. In addition 267 268 to surface material transport, subsurface pipe flow influences hillslope runoff processes and soil transport by erosion (Jones, 1987). Although cases of subsurface pipe flow have been reported 269 on forest slopes in Japan (Uchida et al., 2001), no case of surface soil-particle transport by 270 subsurface flow has been reported in this area. Therefore, the soil particle transport of the 271 subsurface is considered negligible. 272

273 The ¹³⁷Cs activity concentration in 1-cm-deep surface soil at x_n [m] from the ridge at time t,

274 $C_{soil}(x_n, t)$, was calculated from $S_{soil}(x_n, t)$ and the soil density, $D = 0.194 \text{ Mg/m}^3$, measured as 275 the average density of surface soil from 0 to 1 cm, as follows:

276
$$C_{soil}(x_n, t) = S_{soil}(x_n, t) / 10D$$
 (13)

Changes in $S_{litter}(x_n, t)$ and $S_{soil}(x_n, t)$ were calculated using ¹³⁷Cs transport rates for litter and soil, respectively, as well as vertical ¹³⁷Cs transfer rates from the litter layer to the soil layer $Q_D(x_n, t)$ [kBq/m²/yr] and from the surface soil to the subsurface soil, $Q_V(x_n, t)$ [kBq/m²/yr] (Figure 3), the ¹³⁷Cs activity concentration in the litterfall, $C_{LF}(t)$, and uptake by plants, Q_{UP} [kBq/m²/yr], as shown below:

282
282

$$dS_{litter}(x_n, t) / dt = C_{LF}(t) \times LF(t) - p(C_{litter}(x_n, t) \times TM(x_n, t))$$
283

$$- C_{litter}(x_{n-1}, t) \times TM(x_{n-1}, t)) - Q_D(x_n, t), \quad (14)$$

284
$$dS_{soil}(x_n, t) / dt = Q_D(x_n, t) - (1 - p)(C_{soil}(x_n, t) \times TM(x_n, t))$$

285
$$-C_{soil}(x_{n-1},t) \times TM(x_{n-1},t) - Q_{V}(x_{n},t) - Q_{UP}(x_{n},t), \quad (15)$$

286
$$Q_D(x_n, t) = \beta S_{litter}(x_n, t), \qquad (16)$$

287
$$Q_{V}(x_{n}, t) = \gamma_{n} S_{soil}(x_{n}, t).$$
(17)

288
$$C_{LF}(t) = A_1 e^{-(\lambda_1)t} + A_2 e^{-(\lambda_2)t},$$
 (18)

¹³⁷Cs deposition via litter fall, Q_{LF} , was calculated from $C_{LF}(t)$ along with the average LF (0.4 kg/m²/yr). $C_{LF}(t)$ was fitted to concentrations observed from October 2012 to September 2013 (Endo et al., 2015) at this study site and data from October 2013 to December 2014 (Endo, unpublished data) using the double exponential model (Kato et al., 2017; Onda et al, 2020b), where A_1 and A_2 denote the initial activity concentration levels of ¹³⁷Cs in the litterfall declined rapidly and slowly, respectively, and λ_1 and λ_2 represent rate constants for the rapid and slow decline rate (year⁻¹) of the activity concentration in litterfall, respectively. In this study, we assumed that uptake by plants was negligible ($Q_{UP}(x_n, t) = 0$) for the entire period, as the amount taken up by plants was less than 1% of the soil ¹³⁷Cs inventory (Plamboeck et al., 2000; Imamura et al., 2021).

In this study, the annual ¹³⁷Cs transfer ratio between the litter and soil due to decomposition, 299 β [1/yr], was set to 0.7, as Endo et al. (2018) reported a decomposition rate of 0.6 to 0.75 and 300 Nakanishi et al. (2014) reported a decomposition rate of 0.5 to 0.8 according to the annual ¹³⁷Cs 301 leaching rate from litter. The ¹³⁷Cs transfer ratio due to leaching from the surface soil to the 302 subsurface soil at each area, γ_n , was assumed to be constant among years. γ_n was fitted to the 303 calculated ratio of $S_{soil}(x_n, t)$ to the ¹³⁷Cs inventory of each area and was similar to the average 304 observed ratio of ¹³⁷Cs accumulated in the 1-cm surface layer to the ¹³⁷Cs inventory in 2017. 305 The parameter values for the model and their symbols are listed in Table 1. 306

307

308 3. Results

309 **3.1 Soil** ¹³⁷Cs activity concentration and inventory

The profiles of ¹³⁷Cs activity concentration in each soil sampling subplot in November 2017 are shown in Figure S1, respectively. We found that the ¹³⁷Cs activity concentration was highest 312 within 5 cm of the surface soil layer with high organic matter content and decreased with increasing depth. At depths of > 20 cm, 137 Cs activity concentrations were < 0.1 kBq/kg in all 313 subplots. The mean ¹³⁷Cs activity concentration in leaf litter on the ground (C_{litter}) in December 314 2016 was 0.96 \pm 0.47 kBq/kg. The C_{litter} was lower than the ¹³⁷Cs activity concentration of 315 surface soil layer (12-54 kBq/kg) (Figure S1). 316 The 137 Cs inventories of each subplot are shown in Figure 4. The mean \pm standard deviation 317 (SD) ratios of soil surface (depth, 1 cm) to total (across the entire soil depth sampled) ¹³⁷Cs 318 activity concentration for the riparian, slope, and ridge subplots were $13 \pm 11\%$, $20 \pm 13\%$, and 319 $20 \pm 10\%$, respectively. Greater surface soil ¹³⁷Cs accumulation was observed in slope and ridge 320 areas than in riparian areas. 321 The relationship of the average distance between each subplot and the stream channel with 322 the average soil ¹³⁷Cs inventory of the subplots is shown in Figure 5. The mean \pm SD ¹³⁷Cs 323 inventory within the study area was 322 ± 227 kBg/m². The area-weighted average ¹³⁷Cs 324 inventory was 294 kBq/m². The average ¹³⁷Cs inventory of the riparian (subplots 1 and 2), slope 325

326 (subplots 3, 4, and 5), and ridge (subplot 6) areas were 455 ± 287 , 269 ± 173 , and 212 ± 113

 kBq/m^2 , respectively.

328

329 **3.2** ¹³⁷Cs deposition via litter

The litter amounts collected in 2015 and 2016 were 0.32 ± 0.03 and 0.50 ± 0.06 kg/m²/year,

respectively. The annual ¹³⁷Cs deposition rates via litterfall (Q_{LF}) in 2015 and 2016 were 0.15 ± 0.04 and 0.35 ± 0.08 kBq/m²/year, respectively. The volume-weighted mean ¹³⁷Cs activity concentration in litter (C_{LF}) from 2015 to 2016 was 0.62 kBq/kg. Comparing our data to those reported in previous studies for the same site (2012–2013, Endo et al., 2015; 2014, Endo, unpublished data), $C_{LF}(t)$ declined rapidly in the two years following initial fallout and has declined moderately in years 3 to 6 (Figure S2).

337

338 **3.3 Lateral transport of ¹³⁷Cs**

The TM values of ST1, ST2, and ST3 were 0.027, 0.088, and 0.2 kg/m²/yr, respectively, and 339 Q_{TM} values for the transport of ¹³⁷Cs were 0.072, 0.082, and 0.53 kBg/m²/yr, respectively, from 340 January to December of 2017. TM had a negative relationship with the contribution area and a 341 positive relationship with the slope angle (degree) at a given observation point (Figure S3). 342 The C_{TM} values at ST1, ST2, and ST3 were 2.1, 0.92, and 2.0 kBg/kg, respectively, and the 343 overall average was 1.7 ± 0.89 kBq/kg, which was higher than the ¹³⁷Cs activity concentration 344 in litterfall (0.62 \pm 0.11 kBq/kg) and lower than the average ¹³⁷Cs activity concentration in 1-345 cm surface soil (24 ± 21 kBq/kg) (Figure 6). The average Sc in 2017 was 0.0051 m²/kg. 346 The mean litter contribution rates (p) to TM at ST1, ST2, and ST3, which were calculated 347 using Eq. (1), were 0.95, 0.99, and 0.96, respectively. The mean contributions of transported 348 litter to $Q_{TM}(q)$ at ST1, ST2, and ST3 were 0.3, 0.69, and 0.28, respectively. These results 349

indicate that litter was the main material transported along the hillslope and that ¹³⁷Cs was 350 transported primarily by soil during the observation period in 2017. The estimated annual ratios 351 of litter transport to litterfall (pTM/LF) at ST1, ST2, and ST3 were 6.2%, 21%, and 47%, 352 respectively, with an average of 24%. Most LF stayed in place on the hillslope; however, spatial 353 variations were observed, with greater movement of litter in the upper slope area. 354 Seasonal fluctuations in the material transport rate (kg/m^2) varied among observation periods. 355 The daily mean material transport rate was lower during the growing season (April to 356 September; 0.21 ± 0.13 g/m²/day) than during the dormant season (October to March; $0.33 \pm$ 357 $0.50 \text{ g/m}^2/\text{day}$; Figure 7c). No clear correspondence was found between the daily material 358 transport rate and rainfall erosivity factor, R (Figure 7a,b, c). The daily mean 137 Cs transport 359 rate was markedly higher during the growing season ($0.88 \pm 1.1 \text{ kBq/m}^2/\text{day}$) than during the 360 dormant season (0.37 \pm 0.6 Bq/m²/day; Figure 7d). C_{TM} was higher during the growing season 361 $(4.0 \pm 2.9 \text{ kBq/kg})$ than during the dormant season $(0.8 \pm 0.4 \text{ kBq/kg}; \text{Figure 7e})$. The 362 contribution rate of litter transport to TM(p) during the growing season was 0.83, which was 363 lower than the value (0.99) during the dormant season. The mean contribution of transported 364 litter to $Q_{TM}(q)$ was 0.77 in the dormant season and 0.13 in the growing season. 365

366

367 **3.4 Estimated changes in the ¹³⁷Cs inventory due to litter and soil transport**

368 Estimated changes in the ¹³⁷Cs inventory in the riparian zone (S_{rip}), slope (S_{slope}), and ridge

369	(S_{ridge}) from 2011 to 2017 were associated with α values of 0, 0.5, and 1 and are shown in Figure
370	8. $S_{initial}$ was estimated as 338 ± 167 kBq/m ² . S_{rip} , S_{slope} , and S_{ridge} in 2017 were close to the
371	observed values when α was between 0.5 and 0.8. Conversely, when all of the initially deposited
372	¹³⁷ Cs adhered to the surface soil ($\alpha = 0$), the calculated S_{rip} , S_{slope} , and S_{ridge} values varied little
373	from 2011 to 2017 and did not reproduce the observed spatial distribution of the ¹³⁷ Cs inventory
374	(Figure 8). The calculated changes in Q_{TM} values between the ridge and slope area and between
375	the slope and riparian area from 2011 to 2017 (Figure S4) showed that higher α values led to
376	higher Q_{TM} from 2011 to 2012; however, Q_{TM} decreased over time and approached the observed
377	values in 2017 regardless of the value of α . This result indicated that C_{litter} decreased rapidly as
378	litter decomposed over a few years, and the contribution of litter transport to ¹³⁷ Cs movement
379	down the slope decreased with time. The calculated value of Sc was 0.89 m ² /kg in 2011–2012
380	and converged to the observed Sc in 2017, when α was 0.5. When the initially deposited ¹³⁷ Cs
381	adhered to soil ($\alpha = 0$), Sc was in the range of 0.005–0.02 m ² /kg during the 2011–2017 period.
382	Calculated LG at ridge and slope were 0.5, 0.6 kg/m ² , respectively.
383	Sensitivity analysis indicated that the changes in calculated S_{rip} were most sensitive to α and
384	also responded to TM and LG at the time of the accident (Figure S6). These results indicate that,
385	even with some uncertainty, the initial movement of litter with high ¹³⁷ Cs activity
386	concentrations was the most important factor controlling the spatial distribution of the ¹³⁷ Cs
387	inventory on the hillslope.

4. Discussion

390 4.1 Observed ¹³⁷Cs inventory on the hillslope

391	More than 90% of the ¹³⁷ Cs inventory was concentrated in the top 10 cm of surface soil
392	across the entire hillslope (Figure 4); this finding is consistent with previous reports that ¹³⁷ Cs
393	is concentrated at depths of less than 10 cm (Nakanishi et al., 2014; Takahashi et al., 2015,
394	2018). The estimated amount of 137 Cs initially deposited based on the observed average 137 Cs
395	inventory (338 kBq/m ²) exceeded the value (236 kBq/m ²) estimated from the initial 137 Cs
396	deposition map constructed by Kato et al. (2019b). The initial deposition estimates had
397	uncertainties due to measurement error in aircraft-based inventory estimates for mountainous
398	areas. Field measurements are necessary to estimate ¹³⁷ Cs inventory on a small scale in steep
399	terrain.
400	The larger ¹³⁷ Cs inventory observed in downslope areas in this study (Figure 5) differed
401	from the reported pattern of a higher air dose rate at higher elevation on a forested hillslope
402	(Atarashi-Ando et al., 2015; Schaub et al., 2010). Previous studies have suggested that the
403	differences in the spatial distribution pattern of air dose rate were mainly due to differences in
404	initial deposition, and the initial level of ¹³⁷ Cs deposition tends to increase with elevation, and
405	that vegetation type affects the initial spatial distribution on the ground (Atarashi-Ando et al.,
406	2015; Schaub et al., 2010). Thus, our study site might have received greater initial ¹³⁷ Cs

deposition in areas at higher elevation, but the results of the spatial variation of ¹³⁷Cs
inventory, which is greater at lower elevations, obtained in this study are indicated that the
initially deposited ¹³⁷Cs was redistributed across the hillslope via lateral transport of material.

4.2 Observed *LF*, *TM*, and Q_{TM} on the hillslope

412	The ¹³⁷ Cs activity concentration due to litterfall, C_{LF} , decreased rapidly in the early two years
413	after the accident and was stable from 2013 to 2016 (Figure S2). A decreasing trend in ^{137}Cs
414	input from litterfall was also observed at other sites (Kato et al., 2019a). For deciduous
415	broadleaf trees, the reported ¹³⁷ Cs input through litterfall was 10–15% of the total amount
416	deposited, most of which fell to the forest floor within the first year (Kato et al., 2017). In this
417	study, the total Q_{LF} after 2012 was less than 2% of the initial ¹³⁷ Cs inventory, and less than
418	10% of the ¹³⁷ Cs inventory was stored in aboveground vegetation in 2012 (Murakami et al.,
419	2019). Therefore, nearly all ¹³⁷ Cs deposited was estimated to have reached the ground in
420	2011. The remaining ¹³⁷ Cs intercepted by the canopy and absorbed by plants would then
421	supplied to the forest floor by litterfall over a longer time period.
422	The TM (0.03–0.2 kg/m ² /yr) observed in 2017 was similar to the TM (0.033–0.13 kg/m ² /yr)
423	observed on the same slope in 2014 (Kashihara et al., 2014) and values reported for Japanese
424	hillslopes with similar slope angles (13-39°) covered with broadleaf forests, with values of
425	0.004-0.019 kg/m ² in half a year (Niizato et al., 2016), 0.047–0.1 kg/m ² /yr (Nishikiori et al.,

426	2015b), and 0.1-1.1 kg/m ² /yr in understory covered plot (Wakahara et al., 2008) reported. The
427	relationship between slope angle and TM in these previous studies shows an exponential
428	regression line similar to that of the present study (Figure S3), indicating that it is reasonable
429	that the TM increases exponentially with increasing slope.
430	In this study, the average litter transport ratio to $TM(p)$, estimated using ¹³⁷ Cs as a tracer,
431	exceeded 0.95. This high litter content was consistent with the fact that few trapped sediments
432	were observed and primarily fine particles were attached to the litter. The average amount of
433	litter transported was 24% of LF, consistent with reported values ranging from 10% to 30%
434	(Benfield, 1997; Hart et al., 2013). In addition, this litter transport is more likely to occur
435	during the dormant season, when little rainfall occurs, suggesting that litter movement is
436	influenced not only by rain but also by wind. The movement characteristics of litter on forest
437	hillslopes have been reported to be basically down-slope movement (Orndorff and Lang,
438	1981), and the main factors affecting litter movement are understory vegetation, topography,
439	and wind speed (Orndorff and Lang, 1981; France, 1995; Abe et al., 2009). The rate of litter
440	movement on slopes has been measured on forest slopes in Japan with similar tree species,
441	and litter movement has been reported to be approximately 0.1 m/day during the dormant
442	season (Abe et al., 2009) and more active in the dry season of winter and spring than in the
443	wet season of the growing season (Funada et al., 2007; Abe et al., 2009). As for soil
444	movement, it is generally known that surface flow rarely occurs, and raindrop erosion is the

main process influencing forest soil movement in Japan (Miura et al., 2002). Therefore, litter
movement is larger than soil movement by erosion, which is consistent with the results of this
study.

448	The ¹³⁷ Cs transport rate (Q_{TM}) in 2017 ranged from 0.07 to 0.50 kBq/m ² /yr depending on
449	the slope location. These amounts are 0.02–0.15% of the concurrent 137 Cs inventory and are
450	similar to ratios of 0.07–0.2% representing lateral ¹³⁷ Cs transport due to soil wash-off from
451	2011 to 2014, which were reported in previous studies of the ¹³⁷ Cs inventory on hillslopes
452	covered with coniferous and broadleaf trees (Yoshimura et al., 2015; Niizato et al., 2016;
453	Wakiyama et al., 2019; Onda et al., 2020a). The average Sc in 2017 was 0.005 m ² /kg,
454	comparable to Sc values of 0.003–0.064 m ² /kg for other Japanese forests in 2012–2015 (Onda
455	<i>et al.</i> , 2020b).
456	The seasonal change in the ¹³⁷ Cs material transport rate (Figure 7) showed that C_{TM} was
456 457	The seasonal change in the ¹³⁷ Cs material transport rate (Figure 7) showed that C_{TM} was higher during the growing season than during the dormant season due to increased sediment
456 457 458	The seasonal change in the ¹³⁷ Cs material transport rate (Figure 7) showed that C_{TM} was higher during the growing season than during the dormant season due to increased sediment transport, and that the litter contribution to transported material, p , was lower during the
456 457 458 459	The seasonal change in the ¹³⁷ Cs material transport rate (Figure 7) showed that C_{TM} was higher during the growing season than during the dormant season due to increased sediment transport, and that the litter contribution to transported material, p , was lower during the growing season. The climate of the study area makes splash soil erosion more likely in the
456 457 458 459 460	The seasonal change in the ¹³⁷ Cs material transport rate (Figure 7) showed that C_{TM} was higher during the growing season than during the dormant season due to increased sediment transport, and that the litter contribution to transported material, p , was lower during the growing season. The climate of the study area makes splash soil erosion more likely in the growing season, when more than 75% of the annual rainfall occurs (Japan Meteorological

462 summer have been observed (Miura *et al.*, 2015). These results indicate that hillslope litter

463 cover and transport are important drivers of temporal variations in ¹³⁷Cs transport on the
464 hillslope.

465

466 **4.3 Effects of ¹³⁷Cs transport on the spatial distribution of ¹³⁷Cs on the hillslope**

467	In 2017, a higher ¹³⁷ Cs inventory was measured in the riparian area than in the ridge area.
468	The ¹³⁷ Cs mass balance model indicated that current spatial variations in the ¹³⁷ Cs inventory
469	on the hillslope could not be reproduced without ¹³⁷ Cs transport in litter in 2011 and 2012,
470	when the initially deposited ¹³⁷ Cs was distributed uniformly and more than 50% of the initial
471	¹³⁷ Cs was attached to leaf litter on the ground. The result that no significant change in spatial
472	variation in the ¹³⁷ Cs inventory on the hillslope when the rate of adhesion to the initial litter
473	was 0% ($\alpha = 0$), supported the importance of litter movement on redistribution of ¹³⁷ Cs. These
474	results are consistent with previous findings that lateral transport of leaf litter led to ¹³⁷ Cs
475	accumulation at the bottom of a hillslope (Koarashi et al., 2014; Sakai et al., 2016; Onda et
476	<i>al.</i> , 2020b).
477	In this study, the estimated Sc for 2011–2012 was orders of magnitude higher when litter

- 478 transport was included ($\alpha > 0.5$) than when only sediment transport was considered ($\alpha = 0$)
- 479 (Figure S5). For sediment transport, the estimated *Sc* from 2012 to 2015 was similar to the
- 480 range of results in previous studies (Wakiyama et al., 2019; Onda et al., 2020b). According to
- 481 Onda et al. (2020b), Sc in forests in Fukushima gradually trended downward in 2012–2015,

and ¹³⁷Cs transport on sediment had no significant effect on the ¹³⁷Cs inventory. However,
this study showed that early litter migration in 2011 and 2012 could transport a large amount
of ¹³⁷Cs.

485	In the model, the assumptions that most ¹³⁷ Cs reached the forest floor in 2011 and that
486	more than half of the deposited ¹³⁷ Cs adhered to litter on the forest floor appear reasonable, as
487	the canopy was defoliated and the forest floor covered with litter in March. At the same site,
488	Murakami et al. (2014) reported a ¹³⁷ Cs activity concentration greater than 100 kBq/kg in leaf
489	litter on the ground of bottom slope area in 2012, indicating that leaf litter on the ground had a
490	high ¹³⁷ Cs activity concentration similar to the value of C_{litter} calculated in 2012 with an α =
491	0.5. Hashimoto <i>et al.</i> (2020) reported that the contribution of the 137 Cs inventory in the
492	mineral soil layer in 2011 was about 50% of the total inventory of the broadleaf forest; the α
493	value (0.5) used here is consistent with their results. Simulated LG at ridge and slope areas
494	were 0.5 and 0.6 kg/m ² , respectively. The simulated LG values were comparable to the
495	observed values in previous study in forest slope of the same tree species and similar
496	topography (35-40°), which reported that litter abundance was $0.26 - 0.58 \text{ kg/m}^2$ (Koarashi et
497	al., 2014).
498	The model developed in this study is limited by its simple framework and uncertainties

499 related to measurement error and assumptions about the scales of ridge, slope, and riparian

⁵⁰⁰ areas, as well as the lateral and vertical ¹³⁷Cs transport processes. Uncertainties were included

501	in the scales of the ridge, slope, and riparian areas, but the effect of these variations on the
502	calculated ¹³⁷ Cs inventory for each area was less than 5%. This model also assumes that the
503	top 0–1 cm of the surface soil contributes to TM , that ¹³⁷ Cs is fixed, and that lateral
504	movements are negligible below the top 1-cm soil layer. The mobile dissolved ¹³⁷ Cs activity
505	concentration is a limited component of the total ¹³⁷ Cs inventory (Nakanishi et al., 2014;
506	Iwagami et al., 2017), and the uptake of ¹³⁷ Cs by vegetation is negligible (Nishikiori et al.,
507	2015a). The ¹³⁷ Cs activity concentrations in the 0–1cm surface soil layer create uncertainty in
508	the litter contribution rate to $TM(p)$. The horizontal variations in the concentration in surface
509	soil (0–1 cm) in each of the three areas analyzed covered a range of $\pm 60\%$. To assess errors
510	related to vertical variation, the 1–2-cm and 2–3-cm concentrations were compared to the 0–
511	1-cm concentration in each area. The concentrations at $1-2$ cm and $2-3$ cm were 60–90% and
512	35-80% of the concentration at 0-1 cm, respectively. These horizontal and vertical variations
513	in surface soil ¹³⁷ Cs activity concentrations resulted in approximately 8% (2–20%)
514	uncertainty in p estimation. When these uncertainties were considered, the influence of litter
515	transport on ¹³⁷ Cs redistribution on the hillslope remained significant.
516	

517 **4.4 Predicted ¹³⁷Cs transport and spatial distribution on the forest hillslope**

518 In this study, we found that ¹³⁷Cs transport with litter and sediment accounted for less than 519 0.5% of the ¹³⁷Cs inventory in 2017. We estimated a rapid decrease in litter Q_{TM} levels from

520	2011–2012 to 2017 due to decreased ¹³⁷ Cs activity concentrations in the litter and organic
521	layer, as well as vertical ¹³⁷ Cs transport into subsurface soil during litter decomposition. If
522	average rainfall continues, we expect Q_{TM} to decrease further and spatial changes in the ¹³⁷ Cs
523	inventory to stabilize, as the ¹³⁷ Cs activity concentration in surface soil will decrease with
524	further vertical movement of ¹³⁷ Cs (Nakanishi et al., 2015a; Kato et al., 2017; Hashimoto et
525	al., 2020). However, if rainfall greatly exceeds previous rainfall levels, a large ¹³⁷ Cs transport
526	event may occur. In October 2019, maximum daily rainfall equivalent to the 100-year
527	probability rainfall event was observed due to a typhoon. At that time, unexpectedly severe
528	sediment erosion may have occurred. Consideration of the effects of heavy rainfall is essential
529	to better predicting future ¹³⁷ Cs movement.
530	Downslope accumulation of ¹³⁷ Cs may represent a main source of ¹³⁷ Cs cycling in plant
531	and stream ecosystems (Koarashi et al., 2014; Murakami et al., 2014; Sakai et al., 2016) and a
532	long-term source of dissolved and particulate ¹³⁷ Cs output to streams (Iwagami et al., 2019;
533	Onda et al., 2020b). Although the rate of ¹³⁷ Cs runoff via streamflow was found to be
534	negligible compared to the forest soil ¹³⁷ Cs inventory (Yamashiki et al., 2014; Evrard et al.,
535	2015), heavy rainfall can also trigger sediment transport of ¹³⁷ Cs due to slope failure or the
536	erosion of ¹³⁷ Cs-contaminated soil in riparian zones. Therefore, our hillslope ¹³⁷ Cs spatial
537	distribution results can facilitate predictions of ¹³⁷ Cs discharge from forested catchments.

538	The results of this study suggest that the spatial distribution of ¹³⁷ Cs on the deciduous
539	broadleaf forest hillslope in our study area is influenced by three factors: forest composition,
540	the timing of the FDNPP accident, and high litter mobility. The FDNPP accident occurred in
541	March, when the predominantly deciduous broadleaf trees were leafing out, which allowed
542	high ¹³⁷ Cs deposition directly onto the forest floor. Then, the highly mobile broadleaf litter
543	transported ¹³⁷ Cs throughout the study area within 1–2 years of the accident.
544	On the slopes of conifer-dominated forests, less ¹³⁷ Cs transport and a more homogeneous
545	spatial distribution of ¹³⁷ Cs are expected, partly due to the limited mobility of coniferous
546	needle litter compared to broadleaf litter (Hart et al., 2013), and partly because conifers
547	trapped more ¹³⁷ Cs in the canopy in March 2011, decreasing direct deposition onto the forest
548	floor and subsequently delaying transfer to the forest floor via throughfall (Kato et al., 2017;
549	Onda et al., 2020b).
550	The spatial distribution of the ¹³⁷ Cs inventory on forest hillslopes remains poorly
551	understood; further studies should collect ¹³⁷ Cs transport data to assess the impacts of extreme
552	rainfall events on forest hillslopes hosting various tree species and occupying diverse
553	topographies to evaluate the broader ¹³⁷ Cs dynamics of forest ecosystems.
554	

555 **5.** Conclusion

This study investigated the spatial distribution of the ¹³⁷Cs inventory on a steep hillslope 556 covered with broadleaf forest in Fukushima, Japan, and the impacts of ¹³⁷Cs transport via 557 sediment and litter movement on the spatial distribution of the ¹³⁷Cs inventory. We found that 558 the bottom slope area had a larger ¹³⁷Cs inventory than the upper slope on this forested 559 hillslope covered with deciduous trees in 2017. ¹³⁷Cs transport along the slope surface with 560 litter and sediment from 2016 to March 2018 accounted for less than 0.5% of the initial ¹³⁷Cs 561 inventory. 562 The mass balance model results suggest that the spatial distribution of the ¹³⁷Cs inventory 563 on the forested hillslope resulted from the movement of litter with high ¹³⁷Cs activity 564 concentrations in the years following the Fukushima Daiichi Nuclear Power Plant accident. 565 Previous studies have focused primarily on ¹³⁷Cs transport due to sediment movement and 566 showed that the effect on the ¹³⁷Cs inventory was negligible. By contrast, this study suggests 567 that initial litter movement may have had a significant effect on the spatial distribution of the 568 ¹³⁷Cs inventory. In the future, the spatial distribution of the ¹³⁷Cs inventory on the hillslope 569 will likely stabilize, if the average level of precipitation is maintained. However, heavy 570 rainfall may cause downward movement of soil and litter and erosion in the riparian area, 571 resulting in ¹³⁷Cs transport downslope and runoff downstream. Therefore, the dynamics of 572 sediment and litter during extreme rainfall events require elucidation. 573

5	7	4
---	---	---

575	
515	

576	References
577	Abe, T., Sakamoto, T., Tanaka, H., Kabeya, N., Nobuhiro, T., Hagino, H. (2009) Estimation of
578	downslope leaf-litter transport on a forest floor using artificial leaves. J. Jpn. For. Soc. 91,
579	104–110.
580	Atarashi-Ando, M., Koarashi, J., Takeuchi, E., Tsuduki, K., Nishimura, S., Matsunaga, T.
581	(2015) Catchment-scale distribution of radiocesium air dose rate in a mountainuous
582	deciduous forest and its relation to topography. Journal of Environmental Radioactivity, 147,
583	1-7.
584	Benfield, E. F. (1997) Comparison of litterfall input to streams. Journal of the North American
585	Benthological Society 16:104–108.
586	Endo, I., Ohte, N., Iseda, K., Tanoi, K., Hirose, A., Kobayashi, N. I., Murakami, M., Tokuchi,
587	N., Ohashi, M. (2015) Estimation of radioactive 137-cesium transportation by litterfall,
588	stemflow and throughfall in the forests of Fukushima. Journal of Environmental
589	Radioactivity, 149, 176-185.
590	Endo, I., Ohashi, M., Tanoi, K., Kobayashi, N.I., Hirose, A., Ohte, N. (2018) Studying 137Cs

- 591 dynamics during litter decomposition in three forest types in the vicinity of Fukushima Dai-
- 592 ichi Nuclear Power Plant, Journal of Forest Research, 23:2, 85-90, DOI:

593 10.1080/13416979.2018.1460189

- 594 Evrard, O., Laceby, J.P., Lepage, H., Onda, Y., Cerdan, O., Ayarault, S. (2015) Radiocesium
- 595 transport from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant
- 596 accident: A review. Journal of Environmental Radioactivity, 148, 92-110.
- 597 Fisher, S.A. (1977) Organic matter processing by a stream segment ecosystem: Fort River,
- 598 Massachusetts, U.S.A. Internationale Revue der gesamten Hydrobiologie 62: 701–727.
- 599 France, R. L. (1995) Empirically estimating the lateral transport of riparian leaf litter to lakes.
- 600 Freshwater Biology 34, 495–499.
- 601 Funada, S., Yoshimura, C., Ishidaira, H., Takeuchi, K. (2007) Observation of leaf-litter
- dynamics by using individual identification technique of IC tag. The Journal of Japan Society
- 603 of Civil Engineers, 51, 1159-1164.
- 604 Ghahramani, A., Ishikawa, Y., Gomi, T. (2011) Slope length effect on sediment and organic
- 605 litter transport on a steep forested hillslope: upscaling from plot to hillslope scale.
- 606 Hydrological Research Letters 5, 16–20.
- 607 Hart, S. K., Hibbs, D.E., Perakis, S.S. (2013) Riparial litter inputs to streams in the central
- 608 Oregon Coast Range. Freshwater Science, 32, 343-358.
- Hashimoto, S., Ugawa, S., Nanko, K., Shichi, K. (2012) The total amounts of radioactively
- 610 contaminated materials in forests in Fukushima. Scientific Reports. 2, 416.
- 611 http://dx.doi.org/10.1038/srep00416.

612	Hashimoto, S., Imamura, N., Kaneko, S., Komatsu, M., Matsuura, T., Nishina, K., Ohashi, S.
613	(2020) New predictions of ¹³⁷ Cs dynamics in forests after the Fukushima nuclear accident.
614	Scientific Reports, 10:29. https://doi.org/10.1038/s41598-019-56800-5.
615	Imaizumi, F., Nishii, R., Ueno, K., Kurobe, K. (2019) Forest harvesting impacts on
616	microclimate conditions and sediment transport activities in a humid periglacial environment.
617	Hydrol. Earth Syst. Sci., 23, 155–170.
618	Imamura, N., Komatsu, M., Ohashi, S., Hashimoto, S., Kajimoto, T., Kaneko, S., Tkano, T.,
619	(2017) Temporal changes in the radiocesium distribution in forests over the five years after
620	the Fukushima Daiichi Nuclear Power Plant accident. Scientific Reports, 7: 8179.
621	Iwagami, S., Onda, Y., Tsujimura, M., Hada, M., Pun, I. (2017) Vertical distribution and
622	temporal dynamics of dissolved ¹³⁷ Cs concentrations in soil water after the Fukushima Dai-
623	ichi Nuclear Power Plant accident. Environmental Pollution, 230, 1090-1098.
624	Iwagami, S., Onda, Y., Sakashita, W., Tsujimura, M., Satou, Y., Konuma. R., Nishino, M., Abe,
625	Y. (2019) Six-year monitoring study of ¹³⁷ Cs discharge from headwater catchments after the
626	Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity,
627	210:106001.
628	Japanese Forestry Agency, March 31, (2012) Prefecture Proportion of Forested Land and
629	Artificial Forest Land. http://www.rinya.maff.go.jp/j/keikaku/genkyou/h24/1.html
630	Japan Meteorological Agency. Past weather Data of litate Between 1980 to 2010.

- http://www.data.jma.go.jp/gmd/risk/obsdl/index.php#!table (accessed in 2019.2.22. In
 Japanese).
- Jones, J. A. (1987) The effects of soil piping on contributing areas and erosion patterns. Earth
- 634 Surface Processes and Landforms, 12: 229–248.
- 635 Kashihara, M. (2014) Changes in spatial distribution of radiocesium deposited from the nuclear
- 636 power plant accident with surface soil movement in a forest of Fukushima. Graduation thesis
- 637 of University of Tsukuba, Tsukuba, Japan (in Japanese)
- 638 Kato, H., Onda, Y., Hisadome, K., Loffredo, N., Kawamori, A. (2017) Temporal changes in
- radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear
- 640 Power Plant accident. Journal of Environmental Radioactivity, 166, 449-457.
- Kato, H., Onda, Y., Saidin, Z.H. (2019a). Six-year monitoring study of radiocesium transfer in
- 642 forest environments following the Fukushima nuclear power plant accident. Journal of
- Environmental Radioactivity, 210, 105817, <u>https://doi.org/10.1016/j.jenvrad.2018.09.015</u>.
- 644 Kato, H., Onda, Y., Gao, X., Sanada, Y. & Saito, K. (2019b) Reconstruction of a Fukushima
- 645 accident-derived radiocesium fallout map for environmental transfer studies. Journal of
- Environmental Radioactivity, 210, 105996.
- 647 Koarashi, J., Moriya, K., Atarashi-Ando, M., Matsunaga, T., Fujita, H., Nagaoka, M. (2012)
- 648 Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima
- nuclear accident. Scientific Reports, 2: 1005 | Doi: 10.1038/srep01005.

650	Koarashi, J., Atarashi-Ando,	M., Takeuchi, E.	, Nishimura, S.	(2014) Topc	graphic hetero	geneity
000	real asing the real asin r mac,	1,11, 1 and a chill, 12,	, 1 (101111110100, ~·)		Simpline necero	Senere

- 651 effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by
- biologically mediated processes. Scientific Reports, 4: 6853 | DOI:10.1038/srep06853.
- 653 Konoplev, A., V. Golosov, V., Laptev, G., Nanba, K., Onda, Y., Takase, T., Wakiyama, Y.,
- 654 Yoshimura, K. (2016) Behavior of accidentally released radiocesium in soil-water
- 655 environment: Looking at Fukushima from a Chernobyl perspective. Journal of
- Environmental Radioactivity, 151: 568-578.
- 657 Larsen, M. C., Torres-Sanchez, A. J., Concepcion, I. M. (1999) Slopewash, surface runoff and
- 658 fine-litter transport in forest and landslide scars in humid tropical steeplands, Luquillo
- Experimental Forest, Puerto Rico. Earth Surf. Process. Landforms 24, 481-502.
- 660 Miura, S., Hirai, K., Yamada, T. (2002) Transport rates of surface materials on steep forested
- slopes induced by raindrop splash erosion, Journal of Forest Research, 7:4, 201-211, DOI:
- 662 10.1007/BF02763133.
- 663 Miura, S., Yoshinaga, S., Yamada, T. (2003) Protective effect of floor cover against soil erosion
- on steep slopes forested with *Chamaecyparis obtusa* (hinoki) and other species. Journal of
- 665 Forest Research, 8(1), 27-35.
- 666 Miura, S., Ugawa, S., Yoshinaga, S., Yamada, T., Hirai, K. (2015) Floor Cover Percentage
- 667 Determines Splash Erosion in Forests. Soil Science Society of America Journal 79, 1782.
- 668 https://doi.org/10.2136/sssaj2015.05.0171.

669	Murakami, M., Ohte, N., Suzuki, T., Ishii, N., Igarashi, Y., Tanoi, K. (2014) Biological
670	proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan.
671	Scientific Reports, 4: 3599 DOI: 10.1038/srep03599.
672	Murakami, M., Miyata, T., Kobayashi, N., Tanoi, K., Ishii, N., Ohte, N. (2019) The Spatial
673	Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North
674	Fukushima After the Nuclear Power Station Accident. Agricultural Implications of the
675	Fukushima Nuclear Accident (III) (eds Nakanishi, T. M. O'Brien, M. & Tanoi, K.), Springer,
676	Singapore, 141-152.
677	Muto, K., Atarashi-Andoh, M., Matsunaga, T., Koarashi, J. (2019) Characterizing vertical
678	migration of 137Cs in organic layer and mineral soil in Japanese forests: Four-year
679	observation and model analysis. Journal of Environmental Radioactivity, 208-209, 106040.
680	https://doi.org/10.1016/j.jenvrad.2019.106040
681	Nakanishi, T., Matsunaga, T., Koarashi, J. & Atarashi-Andoh, M. (2014) ¹³⁷ Cs vertical
682	migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant
683	accident. J. Environ. Radioact. 128, 9–14.
684	Nakanishi, T., Funaki, H., Sakuma, K. (2021) Factors affecting ¹³⁷ Cs concentrations in river
685	water under base-flow conditions near the Fukushima Dai-ichi Nuclear Power Plant. Journal
686	of Radioanalytical and Nuclear Chemistry, https://doi.org/10.1007/s10967-021-07735-7.
687	Nanko, K., Mizugaki, S., Onda, Y. (2008) Estimation of soil splash detachment rates on the

688	forest floor of an unmanaged Japanese cypress plantation based on field measurements of
689	throughfall drop sizes and velocities. Catena, 72, 348-361, 10.1016/j.catena.2007.07.002.
690	Niizato, T., Abe, H., Mitachi, K., Sasaki, Y., Ishii, Y., Watanabe, T. (2016) Input and output
691	budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima
692	released from the TEPCO's Fukushima Dai-ichi power plant accident. Journal of
693	Environmental Radioactivity, 161,11-21.
694	Nishikiori, T., Watanabe, M., Koshikawa, M.K., Takamatsu, T., Ishii, Y., Ito, S., Takenaka, A.,
695	Watanabe, K., Hayashi, S. (2015a) Uptake and translocation of radiocesium in cedar leaves
696	following the Fukushima nuclear accident. Sci. Total Environ. 502, 611-616.
697	https://doi.org/10.1016/j.scitotenv.2014.09.063.
698	Nishikiori, T., Ito, S., Tsuji, H., Yasutaka, T., Hayashi, S. (2015b) Influence of Forest Floor
699	Covering on Radiocesium Wash-off Associated with Forest Soil Erosion, J. Jpn. For. Soc. 97,
700	63-69.
701	Ohte, N., Murakami, M., Endo, I., Ohashi, M., Iseda, K., Suzuki, T., Oda, T., Hotta, N., Tanoi,
702	K., Kobayashi, N.I., Ishii, N. (2016) Ecosystem monitoring of radiocesium redistribution
703	dynamics in a forested catchment in Fukushima after the nuclear power plant accident in
704	March 2011. Agricultural Implications of the Fukushima Nuclear Accident (eds Nakanishi,
705	T. M. & Tanoi, K.), Springer, Tokyo, 175-188.

706 Onda, Y., Taniguchi K, Yoshimura K, Kato H, Takahashi J, Wakiyama Y, Coppin F, Smith H.

- 707 (2020a) Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial
 708 systems. Nature Reviews Earth and Environment, 1:644–660.
 709 https://doi.org/10.1038/s43017-020-0099-x
- 710 Onda, Y., Hayashi, S., Nagao, S., Ishii, Y., Tsuji, H., Taniguchi, K., Nishina, K., Suzuki, K.,
- 711 Watanabe, S., Prohl, G., Boyer, P., Laurent, G. (2020b) Catchments and Rivers Chapter 6.
- 712 IAEA-TECDOC-1927, 179-227.
- 713 Orndorff, K. A., Lang, G. E. (1981) Leaf Litter Redistribution in a West Virginia Hardwood
- 714 Forest. Journal of Ecology, 69(1), 225–235. https://doi.org/10.2307/2259827.
- 715 Plamboeck, A.H., Nylen, T., Grip, H. (2000) Uptake of cations under two different water
- regimes in a boreal Scots pine forest. Sci. Total Environ. 256, 175–183.
- 717 https://doi.org/10.1016/S0048-9697(00)00483-6.
- Pumpanen, J., Ohashi, M., Endo, I., Hari, P., Bäck, J., Kulmala, M., Ohte, N. (2016) 137Cs
- distributions in soil and trees in forest ecosystems after the radioactive fallout–Comparison
- 720 study between southern Finland and Fukushima, Japan. Journal of Environmental
- 721 Radioactivity, 161: 73-81. https://doi.org/10.1016/j.jenvrad.2016.04.024
- 722 Sala, M. (1988) Slope runoff and sediment production in two Mediterranean mountain
- enviroments. CATENA Suppl., 12:13–29.
- Sakai, M., Gomi, T., Negishi, J. N., Iwamoto, A., Okada, K. (2016) Different cesium-137
- transfers to forest and stream ecosystems. Environmental Pollution, 209, 46-52.

726	Schaub, M., Konz, N., Meusburger, K., Alewell, C. (2010) Application of in-situ measurement
727	to determine 137Cs in the Swiss Alps. Journal of Environmental Radioactivity. 101, 369-376.
728	Shcheglov, A.I., Tsvetnova, O.B., Klyashtorin, A.L. (2001) Biogeochemical migration of
729	technogenic radionuclides in forest ecosystems. Nauka Moscow, -235p.
730	Takahashi, J., Tamura, K., Suda, T., Matsumura, R., Onda, Y. (2015) Vertical distribution and
731	temporal changes of ¹³⁷ Cs in soil profiles under various land uses after the Fukushima Dai-
732	ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 351-361.
733	Takahashi, J., Onda, Y., Hihara, D., Tamura, K. (2018) Six-year monitoring of the vertical
734	distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power
735	Plant accident. Journal of Environmental Radioactivity, 192, 172-180.
736	Taniguchi, K., Onda, Y., Smith, H.G., Blake, W., Yoshimura, K., Yamashiki, Y., Kuramoto, T.,
737	Saito, K. (2019) Transport and redistribution of radiocesium in Fukushima fallout through
738	rivers. Environmental Science and Technology, 53, 12339-12347.
739	Tsukamoto, J. (1991) Downhill movement of litter and its implication for ecological studies in
740	three types of forest in Japan. Ecological Research 6, 333–345.
741	https://doi.org/10.1007/BF02347132
742	Uchida T, Kosugi K, Mizuyama T. (2001) Effects of pipeflow on hydrological process and its
743	relation to landslide: a review of pipeflow studies in forested headwater catchments.

744 Hydrological Processes 15: 2151–2174. DOI: 10.1002/hyp.281.

745	Wakahara, T., Ishikawa, Y., Shiraki, K., Toda, H., Miya, T., Kataoka, F., Suzuki, M., Uchiyama,
746	Y. (2008) Seasonal changes in the amount of litter layer and soil erosion in the forest floor:
747	an impoverished understory by deer impact an Doudaira, Tanzawa Mountains. J Jpn For Soc.
748	90:378–385 (in Japanese with English abstract).
749	Wakiyama, Y., Onda, Y., Yoshimura, K., Igarashi, Y., Kato, H. (2019) Land use types control
750	solid wash-off rate and entrainment coefficient of Fukushima-derived ¹³⁷ Cs, and their time
751	dependence. Journal of Environmental Radioactivity, 210, 105990.
752	Yamashiki Y, Onda, Y., Smith, H.G., Blake, W.H., Wakahara, T., Tachikawa, Y., Igarashi, Y.,
753	matsuura, Y., Yoshimura, K. (2014) Initial flux of sediment-associated radiocesium to the
754	ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Scientific
755	reports 4:3714 . DOI:10.1038/srep03714: 1-7
756	Yoschenko, V., Takase, S., Hinton, T.G., Nanba, K., Onda, Y., Alexei Konoplev, A., Goto, A.,
757	Yokoyama, A., Keitoku, K. (2018) Radioactive and stable cesium isotope distributions and
758	dynamics in Japanese cedar forests. Journal of Environmental Radioactivity, 186, 34-44.
759	Yoshimura, K., Onda, Y., Kato, H. (2015) Evaluation of radiocaesium wash-off by soil erosion
760	from various land use using USLE plots. Journal of Environmental Radioactivity, 139, 362-
761	369.
762	

764	Figure	captions
,		

	Figure 1. (a) Map of initial ^{13/} Cs deposition and the location of the study site (from Endo et al.,
766	2015), (b) topographic map of subplots on the slope, and (c) longitudinal sectional view of the
767	slope subplots. Black dots in panel (b) indicate soil sampling locations, and red dots in panels
768	(b) and (c) indicate sediment trap locations (ST1, ST2, and ST3). In panel (c), the numbers 1 to
769	6 indicate subplots, and black dots indicate the average elevation and distance of each soil
770	sampling location in each subplot.
771	
772	Figure 2. Photographs of the experimental hillslope (a), litter trap (b), and sediment trap (c),
773	and diagram of the sediment trap structure (d).
774	
775	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter
775 776	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and
775 776 777	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and subsurface soil. The ¹³⁷ Cs inventories in each layer are S_{litter} , S_{soil} , and $S_{subsoil}$, respectively, and
775 776 777 778	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and subsurface soil. The ¹³⁷ Cs inventories in each layer are S_{litter} , S_{soil} , and $S_{subsoil}$, respectively, and arrows indicate the amounts of ¹³⁷ Cs moved (Q).
775 776 777 778 779	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and subsurface soil. The ¹³⁷ Cs inventories in each layer are S_{litter} , S_{soil} , and $S_{subsoil}$, respectively, and arrows indicate the amounts of ¹³⁷ Cs moved (Q).
 775 776 777 778 779 780 	Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and subsurface soil. The ¹³⁷ Cs inventories in each layer are S_{litter} , S_{soil} , and $S_{subsoil}$, respectively, and arrows indicate the amounts of ¹³⁷ Cs moved (Q). Figure 4. Mean ¹³⁷ Cs inventory profiles in the soil layers of Subplots 1 to 6 in November 2017.
 775 776 777 778 779 780 781 	 Figure 3. Schematic of the model. The box with a dashed outline represents the ground litter layer, and the two boxes with solid outlines below the litter layer represent the surface soil and subsurface soil. The ¹³⁷Cs inventories in each layer are <i>Slitter</i>, <i>Ssoil</i>, and <i>Ssubsoil</i>, respectively, and arrows indicate the amounts of ¹³⁷Cs moved (<i>Q</i>). Figure 4. Mean ¹³⁷Cs inventory profiles in the soil layers of Subplots 1 to 6 in November 2017. Bars indicate standard deviations.

Figure 5. Relationship between the mean ¹³⁷Cs inventory in each subplot and distance from the
 stream channel. Bars indicate standard deviations.

785

Figure 6. ¹³⁷Cs activity concentrations in leaf litter (C_{litter}), transported material (C_{TM}), and 1cm surface soil layer (C_{soil}). Error bars indicate standard errors.

788

Figure 7. Temporal variations in the (a) monthly rainfall, (b) rainfall erosivity factor (R), (c)

daily mean material transport rate (*TM*), (d) daily mean ¹³⁷Cs transport rate (Q_{TM}), and (e) mean

¹³⁷Cs activity concentration in transported material (C_{TM}) from October 2016 to March 2018.

792

Figure 8. Calculated ¹³⁷Cs inventory changes from 2011 to 2018 in the (a) ridge (S_{ridge}), (b) slope (S_{slope}), and (c) riparian (S_{rip}) areas due to lateral material transport with rates of attachment of initially deposited ¹³⁷Cs to the litter of 100% (\circ), 50% (\triangle), and 0% (\bullet). Diamonds (\bullet) indicate the observed mean ¹³⁷Cs inventory for each area in 2017. Error bars indicate standard errors.

798

799 Tables

Table 1. List of input parameters for the mass balance model and their abbreviations.

Parameters (Abbreviation)	Description	Unit	Value
α	Initial ¹³⁷ Cs adherence rate to litter	-	0 - 1
β	Leaf decomposition rate	1/year	0.7
γ	vertical ¹³⁷ Cs transport rate in the soil layer	-	0.23-0.25
р	Litter contribution rate to transport material	-	0.96
q	the contribution rate of litter transport to ¹³⁷ Cs transport	-	
D	Soil density	Mg/m ³	0.194
Sc	Entrainment coefficient	m²/kg	
R	Rainfall erosivity factor	MJ mm/ha h	
S	Slope steepness factor	-	
K	Soil erosivity factor	-	0.02
LF	Annual litterfall amount	kg/m ² /year	
ТМ	Material transport rate	kg/m²/year	
LG	leaf litter amount on the ground	kg/m ² /year	
C_{LF}	¹³⁷ Cs activity concentration in the litterfall	kBq/kg	
C_{soil}	¹³ Cs activity concentration in the surface soil	kBq/kg	
Clitter	¹³⁷ Cs activity concentration in the ground leaf litter	kBq/kg	
C_{TM}	¹³⁷ Cs activity concentration in the transported material	kBq/kg	
Q_{LF}	Annual ¹³⁷ Cs input by litterfall	kBq/m ² /year	
Q _{TM}	Annual transported ¹³⁷ Cs on the hillslope	kBq/m ² /year	
Q_D	Vertical ¹³⁷ Cs transfer from the litter layer to the soil layer	kBq/m ² /year	
Qv	Vertical ¹³⁷ Cs transfer from the surface soil layer to the subsurface soil layer	kBq/m ² /year	
Q_{Up}	¹³⁷ Cs uptake by plants	kBq/m ² /year	
$S_{initial}$	Initial ¹³⁷ Cs deposition at the study site	kBq/m ²	
$S_{\it rip}$	¹³⁷ Cs inventory of the riparian area	kBq/m ²	
S_{slope}	¹³⁷ Cs inventory of the slope area	kBq/m ²	
S_{ridge}	¹³⁷ Cs inventory of the ridge area	kBq/m ²	
S _{litter}	¹³⁷ Cs inventory of the litter layer	kBq/m ²	
S_{soil}	¹³⁷ Cs inventory of the surface soil layer	kBq/m ²	
$S_{subsoil}$	¹³ /Cs inventory of the subsurface soil layer	kBq/m ²	

Figure 1

Figure 2

Figure 4

Figure 7

Figure 8

Supplementary material

Redistribution of the soil ¹³⁷Cs inventory through litter and sediment transport on a hillslope covered by deciduous forest in Fukushima, Japan

Authors

Tomoki Oda^{1, 2}, Norifumi Hotta², Satoru, Miura¹, Izuki Endo³, Keitaro Tanoi², Chris S. Renschler⁴, Nobuhito Ohte⁵

 Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, Ibaraki 305-8687, Japan

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1
 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

 School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan

4. Department of Geography, University at Buffalo, The State University of New York,116 Wilkeson Quad, Buffalo NY 14261, USA

5. Department of Social Informatics Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Figure S1. Mean ¹³⁷Cs activity concentration profiles in the soil layers (•) of Subplots 1– 6 in November 2017 and mean ¹³⁷Cs activity concentration in the ground litter (\Box) in December 2016. Bars indicate standard deviations.

Figure S2. Changes in the average ¹³⁷Cs activity concentration in litterfall (C_{LF}) from the year since ¹³⁷Cs fallout (*t*). The solid line shows the fitting line by the double exponential curve ($C_{LF}(t) = 2.8e^{-0.37t} + 2.8e^{-1.38t}$).

Figure S3. Relationships of the material transport rate (*TM*) with contribution area (•) (a) and slope angle (•) (b). The TM data with slope in broadleaf forests from Wakahara et al., (2008), Teramage et al., (2013), Kashihara, (2014), Nishikiori et al (2015) and Niizato et al (2016) were plotted as open circle (\circ). The solid lines were exponential regression lines of observed *TM* and contributing area (y = 0.194e^{-0.019x}, R²=0.94) (a) and observed *TM* and slope in this study (y = 0.0006e^{0.154x}, R² = 0.99) (b). The dashed line shows exponential regression line of observed *TM* and slope in previous studies (y= 0.0011e^{0.14x}, R²=0.63).

Figure S4. Calculated changes in ¹³⁷Cs transport from 2011 to 2018 in (a) the ridge to slope area and (b) the slope to riparian area due to lateral transport of material with rates of attachment of initially deposited ¹³⁷Cs to litter of 100% (\circ), 50% (), and 0% (\bullet). Diamonds () indicate the observed mean annual ¹³⁷Cs transport rates at areas around (a) ST3 and (b) ST1 and ST2.

Figure S5. Calculated average entrainment coefficient (*Sc*) from 2011 to 2018 with rates of attachment of initially deposited ¹³⁷Cs to litter of 100% (\circ), 50% (\triangle), and 0% (\bullet). Diamonds (\bullet) indicate the observed *Sc* values in 2017.

Figure S6. Results of sensitivity analysis for the ¹³⁷Cs mass balance model. Changes in the ¹³⁷Cs inventory in the riparian area with changes in the initial attachment rate (α), decomposition rate (β), vertical transfer rate to the subsurface layer (γ), soil density (D), litterfall amount (LF), material transport rate (TM), and ground litter amount (LG).

References

- Kashihara, M. (2014) Changes in spatial distribution of radiocesium deposited from the nuclear power plant accident with surface soil movement in a forest of Fukushima.Graduation thesis of University of Tsukuba, Tsukuba, Japan (in Japanese)
- Niizato, T., Abe, H., Mitachi, K., Sasaki, Y., Ishii, Y., Watanabe, T. (2016) Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi power plant accident. Journal of Environmental Radioactivity, 161,11-21.
- Nishikiori, T., Ito, S., Tsuji, H., Yasutaka, T., Hayashi, S. (2015b) Influence of Forest Floor Covering on Radiocesium Wash-off Associated with Forest Soil Erosion, J. Jpn. For. Soc. 97, 63-69(in Japanese with English abstract).
- Teramage, M., Onda, Y., Kato, H., Wakiyama, Y., Mizugaki, S., Hiramatsu, S. (2013) The relationship of soil organic carbon to 210Pbex and 137Cs during surface soil erosion in a hillslope forested environment, Geoderma 192, 59.
- Wakahara, T., Ishikawa, Y., Shiraki, K., Toda, H., Miya, T., Kataoka, F., Suzuki, M., Uchiyama, Y. (2008) Seasonal changes in the amount of litter layer and soil erosion in the forest floor: an impoverished understory by deer impact an Doudaira, Tanzawa Mountains. J Jpn For Soc. 90:378–385 (in Japanese with English abstract).