| 1  | Microclimate for <i>Cryptomeria japonica</i> seedlings in treeshelters                                            |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | -Mitigation of severe condition by seedling transpiration-                                                        |
| 3  | Reiji Yoneda <sup>a</sup> *, Tatsuya Otani <sup>a</sup> , Tetsuto Abe <sup>b</sup> and Haruto Nomiya <sup>b</sup> |
| 4  | <sup>a</sup> Shikoku Research Center, Forestry and Forest Products Research Institute, Kochi,                     |
| 5  | Japan; <sup>b</sup> Kyushu Research Center, Forestry and Forest Products Research Institute,                      |
| 6  | Kumamoto, Japan                                                                                                   |
| 7  |                                                                                                                   |
| 1  |                                                                                                                   |
| 8  |                                                                                                                   |
| 0  |                                                                                                                   |
| 9  |                                                                                                                   |
| 10 |                                                                                                                   |
|    |                                                                                                                   |
| 11 | *corresponding author: Reiji Yoneda, joneda@affrc.go.jp, Shikoku Research Center,                                 |
| 12 | Forestry and Forest Products Research Institute, 2-915 Asakura-nishi, Kochi, 780-8077,                            |
| 13 | Japan                                                                                                             |
| 14 |                                                                                                                   |
| 14 |                                                                                                                   |
| 15 |                                                                                                                   |

# 16 Microclimate for *Cryptomeria japonica* seedlings in treeshelters

# 17 -Mitigation of severe condition by seedling transpiration-

| 18 | We studied the microclimate inside treeshelters to examine how they affected          |
|----|---------------------------------------------------------------------------------------|
| 19 | growth of Japanese cedar (Cryptomeria japonica) seedlings in western Japan. Air       |
| 20 | temperature (T), relative humidity (RH), and photosynthetic active radiation          |
| 21 | (PAR) were measured inside and outside of commonly used design of tubular             |
| 22 | treeshelters made of translucent polypropylene at a nursery throughout a year.        |
| 23 | Vapor pressure deficit (VPD) was calculated from T and RH data. Results               |
| 24 | indicated that the inside T and VPD above the seedling foliage were extremely         |
| 25 | higher than ambient air. However, T within the seedling foliage showed 2.7 $^\circ$ C |
| 26 | higher than ambient T even though 10.3 °C higher above the foliage in August.         |
| 27 | The VPD within seedling foliage was lower than ambient VPD in summer, and             |
| 28 | increased with decreasing RH when the precipitation was low. Microclimate in          |
| 29 | an empty treeshelter showed higher T and VPD than those in treeshelter with           |
| 30 | seedling. These results indicated that high T and VPD were mitigated by               |
| 31 | transpiration from needle leaves of seedling, and Japanese cedar seedlings could      |
| 32 | grow in treeshelters at sufficient water supply.                                      |

33

- 34 Keywords; air temperature, relative humidity, vapor pressure deficit,
- 35 photosynthetic active radiation, weather condition

#### 37 Introduction

38 Treeshelter, a long plastic tube covering a single seedling, was mainly developed 39 in Europe, especially in England (Potter 1991), and applied to various sites to reduce 40 browsing damages by herbivores on planted seedlings since the 1970s (Potter 1991; 41 Kerr 1996). The physical protection by treeshelters decreased the browsing damages by 42 herbivores (Tuley 1985; Gillespie and Rathfon 1996; Sharpe et al. 1999), and their 43 installation also enhanced seedling survival and growth (Tuley 1985; Potter 1991; 44 Sharpe et al. 1999; Barton et al. 2015). In Japan, treeshelters were introduced to the 45 forestry sector in the 1990s (Nakagawa 1996; Nakamura and Amikura 1998), however, 46 in the western Japan, some reforestation sites protected by treeshelters received severe 47 damages while some other treesheltered sites showed good performance (Nomiya et al. 48 in press).

49 Treeshelters in the previous studies had diverse specifications on materials 50 (Sharpe et al. 1999; Maruyama 2001; Devine and Harrington 2008; Oliet et al. 2019), 51 height (Mayhead and Boothman 1997; Bellot et al. 2002; Chaar et al. 2008), and 52 ventilation hole (Bergez and Dupraz 2000; Chaar et al. 2008). Such differences in 53 specifications might affect the failure and success of the installation of treeshelters as 54 well as differences in environmental conditions. Treeshelters that were applied in 55 plantations in semi-arid regions helped to maintain humidity around the seedlings, 56 reducing transpiration and raising the boundary-layer resistance to water movement 57 within the treeshelter (Kjelgren 1994; Bellot et al. 2002; del Campo et al. 2006). In 58 contrast, some studies reported that treeshelter installation might increase seedling 59 mortality due to high temperature (Skousen et al. 2013) and insufficient irradiance 60 (Bardon et al. 1999). In addition, different seedling species showed different mortality

| 61 | and growth responses even in the identical type of treeshelter (Burger et al. 1996; Jones |
|----|-------------------------------------------------------------------------------------------|
| 62 | et al. 1996). Therefore, it is necessary to clarify the species-specific responses in     |
| 63 | targeted treeshelter when we evaluate treeshelter installation (Bellot et al. 2002;       |
| 64 | Puértolas et al. 2010; Oliet et al. 2019).                                                |
|    |                                                                                           |

The previous studies have focused on the microclimate inside the treeshelter, 65 66 measuring variations in light transmittance, air temperature (T), vapor pressure deficit (VPD), CO<sub>2</sub> concentration, and ventilation effects, all closely related to plant gas 67 68 exchange and growth. Some studies had confirmed that T and VPD showed higher in 69 treeshelter than ambient condition (Potter 1991; Bellot et al. 2002; Devine and 70 Harrington 2008). Excessively high T and VPD were confirmed inside treeshelter, and 71 it was harmful for seedlings planted in high temperature environment with severe 72 summer droughts (Kjelgren and Rupp 1997; Oliet and Jacobs 2007).

73 Japanese cedar (Cryptomeria japonica) is one of popular timber species, and the 74 planted seedlings were seriously suffered from sika deer (Cervus nippon) browsing in 75 reforestation sites for a few decades (Masaki et al. 2017). Treeshelters are getting 76 commonly used in Japanese cedar reforestation sites recently. However, there is still 77 few studies of microclimate for the cylindrical polypropylene treeshelters that are 78 commonly used recently in western Japan. In this study, we measured micro climate in 79 treeshelter for a year-round term at a nursery. From these measuring, we discuss how 80 the microclimate within treeshelters affected growth of Japanese cedar seedlings.

81

#### 82 Materials and Methods

#### 83 Study site

| 84 | This study was conducted at a nursery of the Shikoku Research Center, Forestry        |
|----|---------------------------------------------------------------------------------------|
| 85 | and Forest Products Research Institute (FFPRI-Shikoku) in Kochi City, Shikoku Island, |
| 86 | Japan (33° 32' 30" N, 133° 28' 33" E, 45 m above the sea level). The mean annual      |
| 87 | temperature and annual precipitation during the experimental period (March 2020 to    |
| 88 | February 2021) were 17.4 °C and 3144 mm, respectively (Kochi Local Meteorological     |
| 89 | Observatory, Japan Meteorological Agency 2021; Figure 1).                             |
|    |                                                                                       |

90

## 91 Measuring microclimate in the treeshelter

The treeshelters used in this experiment were circular tubes made of translucent white polypropylene, 140 cm tall and 10 cm in diameter, with a wall thickness of 0.4 mm. The treeshelter had three ventilation holes of 18 mm diameter positioned at 20, 40, and 60 cm above the ground. Three Japanese cedar (*C. japonica*) seedlings were planted in an open area in 2018 and treeshelters were installed in March 2020. The mean height and basal stem diameter of the seedlings were  $72.7 \pm 2.1$  cm ( $\pm$  SD) and  $1.0 \pm 0.1$  cm before measuring microclimate, respectively.

Air temperature (T) and relative humidity (RH) were measured at 10-min intervals using Ondotori RTR500 series devices (T&D Cooperation, Japan) from March 2020 to February 2021. Three sensors were set at different heights: at 10 cm (below the seedling foliage), at 80 cm (above seedling foliage), and at 130 cm (near upper end of treeshelter) in each treeshelter. To avoid heating the sensors by sunlight, they were covered with a cylinder of plastic mesh (3 cm in diameter) with an aluminum roof. The sensors were placed at the center of the treeshelter using a stick at each height and held

horizontally. Vapor pressure deficit (VPD), more suitable indicator than humidity on
physiological processes of plants (Potter 1991), was calculated from the following
equations using simultaneous T and RH data:

109  $VPD = e_{s(T)} \times (1 - h/100)$ 

110  $e_{s(T)} = 6.1078 \times 10^{[7.5T/(T+237.3)]}$ 

111 where  $e_{s(T)}$  is saturated water vapor pressure at air temperature T, and h is RH.

During this study, the positions of the sensors remained unchanged. During experimental period, the seedlings grew in height, reaching  $149.3 \pm 8.3$  cm (mean  $\pm$  SD) in January 2021. The sensors at 80 cm height in treeshelter were covered by needle leaves of seedlings from July 2020. So, the sensor location changed gradually from 'above seedling foliage' to 'inside seedling foliage'.

117 We compared the maximum T ( $T_{max}$ ) and VPD ( $VPD_{max}$ ) among different 118 weather conditions, such as sunny, cloudy and rainy days in summer, because previous 119 study reported that direct sunlight to shelter wall affected air temperature in the 120 treeshelter (Hisatake 1999). Sunny days were picked up from the meteorological data 121 which recorded as 'sunny', 'sunny and sometimes cloudy' and 'sunny and cloudy' 122 throughout a day by the Kochi Local Meteorological Observatory. Likewise, 'cloudy', 123 'cloudy and sometimes sunny' and 'cloudy and sunny' were categorized as cloudy day; 124 the data of 'rain', 'rain and sometimes cloudy', 'rain and cloudy', 'heavy rain' and 125 'heavy rain and rain' as rainy day. We selected the data in June 2020, because we found 126 the well-balanced number of sunny, cloudy and rainy days (4, 6 and 5 days, 127 respectively). The data in July and August, when the ambient air temperature was high, 128 were not selected for the comparison due to many rainy days in July and few cloudy and 129 rainy days in August 2020 (Figure 1b).

In order to clarify effects of physiological activities of planted seedling, T and
RH were measured in an empty treeshelter. The measuring was conducted at the same
height to measuring in treeshelter with seedling. Ambient T and RH were measured at
80 cm height.

134 Photosynthetically active radiation (PAR, 400-700 nm) was measured inside 135 and outside treeshelter in summer (from August to September 2020) because light 136 transmittance varied depending on the materials of the shelter wall (Sharpe et al. 1999). 137 PAR was measured at 80 cm height inside and outside of the empty treeshelter by using 138 PAR sensors (MIJ-14PAR Type 2/K2; Environmental Measurement Japan Co. Ltd.). To 139 evaluate PAR<sub>in</sub>:PAR<sub>out</sub> ratio, PAR in clear sunny throughout daytime data was selected 140 (21 September 2020) (Figure 6a). PAR data in 20 September 2020 was selected for 141 cloudy because the weather was recorded as cloudy. 142 During our measuring, we observed that air temperature at 130 cm height inside 143 treeshelters was approximately 10 °C higher than the ambient air temperature even in 144 the end of autumn (November 2020). To examine the reason of excessive air 145 temperature increment in the treeshelter, we forcedly circulated the air inside a 146 treeshelter with seedling, because many studies mentioned the importance of air 147 circulation and ventilation for air temperature increment inside treeshelter (Swistock et 148 al. 1999; Bergez and Dupraz 2000; Bellot et al. 2002; Bergez and Dupraz 2009). We set 149 an electric fan of 10 cm diameter connected to DC 12 V battery (Bigfan120U; Timely 150 Ltd.) on the top of the treeshelter for 2 consecutive sunny days (from 1 to 2 December 151 2020). The fan was operated for 24 hours. Then we measured T and RH inside and 152 outside treeshelter.

153

# **Results**

# 155 Seasonal change of microclimate inside and outside treeshelters

| 156 | The monthly means of daily maximum T ( $T_{max}$ ), minimum T ( $T_{min}$ ), minimum                            |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 157 | RH ( $RH_{min}$ ), and maximum VPD ( $VPD_{max}$ ) were shown in Figure 2. Seasonal change of                   |
| 158 | the $T_{\text{max}}$ and $T_{\text{min}}$ in the treeshelters followed a trend similar to that of the ambient T |
| 159 | ( $T_{out}$ ) (Figure 2a, 2b). $T_{max}$ at a height of 130 cm in the treeshelter ( $T_{max-130}$ ) showed the  |
| 160 | highest values among measuring heights ( $T_{max-10}$ , $T_{max-80}$ ), and 8.2–14.9 °C higher than             |
| 161 | the maximum ambient T ( $T_{max-out}$ ) throughout the year. The $T_{max-130}$ showed the highest               |
| 162 | value in August 2020 (47.9 $\pm$ 1.8 °C ( $\pm$ SD), n = 93), and exceeded 30 °C even in winter                 |
| 163 | (December 2020 and February 2021). Differences between the $T_{\text{max-80}}$ and $T_{\text{max-out}}$ were    |
| 164 | significant in all months (t-test, $p < 0.05$ ), but the difference was only 2.7 °C in August                   |
| 165 | 2020 (Figure 2a). $T_{\min}$ inside treeshelter were lower than ambient $T_{\min}$ throughout the               |
| 166 | experimental period, but no significant difference was detected between inside and                              |
| 167 | outside treeshelter (t-test, $p > 0.05$ ) (Figure 2b). Variation of $T_{min}$ was high in winter                |
| 168 | (ex7.6 – 10.2 °C in ambient $T_{\text{min}}$ in January 2021). The $RH_{\text{min}}$ at 10 cm and 80 cm in      |
| 169 | treeshelter ( $RH_{min-10}$ , $RH_{min-80}$ ) were higher than ambient $RH_{min}$ ( $RH_{min-out}$ ) during the |
| 170 | experimental period (t-test, $p < 0.05$ ) (Figure 2c). Difference between $RH_{min-130}$ and                    |
| 171 | $RH_{min-out}$ was not significant from March to September 2020 (t-test, $p > 0.05$ ) (Figure                   |
| 172 | 2c). The $VPD_{max}$ at 130 cm height in the treeshelter ( $VPD_{max-130}$ ) fluctuated parallel with           |
| 173 | the ambient $VPD_{max}$ ( $VPD_{max-out}$ ), with 0.9–2.0 kPa higher than $VPD_{max-out}$ and the               |
| 174 | maximum value (5.3 $\pm$ 0.8 kPa, n = 93) in August 2020 (Figure 2d). The <i>VPD</i> <sub>max-80</sub>          |
| 175 | showed in similar values to $VPD_{max-130}$ at the beginning of measuring (March 2020), and                     |
| 176 | fluctuated parallel with the $VPD_{max-10}$ (Figure 2d). In August 2020, remarkable                             |
| 177 | increments of $VPD_{max}$ were observed at all measuring heights.                                               |

The monthly means of the maxium RH and the minimum VPD showed almost
100 % and 0 kPa at each measuring height throughout the measuring period,
respectively.

181

### 182 Microclimate in treeshelters under the different weather conditions

183 In cloudy days, mean  $T_{\text{max-130}}$  reached 42.3 ± 3.8 °C and the value was not 184 significantly different with  $T_{\text{max-130}}$  in sunny condition (Tukey's HSD test, at  $\alpha = 0.05$ 185 level) (Figure 3a). Similar results were observed in  $T_{max-10}$  and  $T_{max-80}$  (Figure 3a). In 186 rainy days,  $T_{\text{max}}$  at each measuring height ranged from 25.0 ± 2.9 to 28.1 ± 5.2 °C and 187 the values were not significantly different among the measuring points (Figure 3a). 188 In similar to  $T_{\text{max}}$ , means of  $VPD_{\text{max}}$  were not significantly different between 189 sunny and cloudy days when we compared at the same measuring height, except for 10 190 cm height inside the treeshelters (Figure 3b). In rainy days, the values were not 191 significantly different among the measuring points (Figure 3b).

192

### 193 Diurnal change of microclimate inside and outside treeshelters in summer

194 Diurnal changes of T, RH and VPD in sunny and cloudy days in August 2020, 195 when the ambient T ( $T_{out}$ ) showed the highest value in the year (Figure 1), were shown 196 in Figure 4. The number of the days recorded as sunny and cloudy in August 2020 were 197 9 and 1 day, respectively. Diurnal change of each environmental factors showed small 198 fluctuation in sunny days, and large in cloudy days. T at 130 cm height in treeshelters 199  $(T_{130})$  increased rapidly from 06:00 and exceeded 40 °C for more than 9 hours (07:50 to 200 17:30) for both sunny and cloudy days (Figure 4a, 4b). The  $T_{130}$  was approximately 201 10 °C higher than  $T_{out}$ , and recorded the maximum value as  $47.4 \pm 1.6$  °C (n = 27) and

| 202 | 47.5 $\pm$ 0.8 °C (n = 3) in sunny and cloudy days, respectively (Figure 4a, 4b). $T_{80}$ also       |
|-----|-------------------------------------------------------------------------------------------------------|
| 203 | increased from 06:00 and was 2–3 °C higher than $T_{out}$ during midday (Figure 4a, 4b).              |
| 204 | RH at 10, 80, and 130 cm height in treeshelter ( $RH_{10}$ , $RH_{80}$ and $RH_{130}$ ) showed almost |
| 205 | 100 % during night time, and decreased rapidly from 06:00 until 09:00 (Figure 4c, 4d).                |
| 206 | $RH_{10}$ , $RH_{80}$ and $RH_{130}$ had less fluctuation in daytime, and the mean values in the      |
| 207 | midday (12:00–14:00) were 55.0 $\pm$ 1.0, 71.3 $\pm$ 0.5 and 54.5 $\pm$ 0.4 % in sunny days,          |
| 208 | respectively (Figure 4c). The VPD at 130 cm height in treeshelter ( $VPD_{130}$ ) was the             |
| 209 | highest value among the measuring heights and the highest value was 5.0 $\pm$ 0.8 kPa (n =            |
| 210 | 27) in sunny days. The $VPD_{80}$ was the lowest value among the measuring heights and                |
| 211 | lower than $VPD_{out}$ (Figure 4e). The $VPD_{80}$ increased until around 09:00 and then              |
| 212 | remained at around 2 kPa until 16:30.                                                                 |
|     |                                                                                                       |

#### Microclimate inside treeshelters with and without seedling in summer 214

215 At 80 cm height in an empty treeshelter, T and VPD were higher than those in 216 treeshelters with seedling and the ambient condition in August 2020 (Figure 5a, 5c). 217 The maximum T and VPD in empty treeshelter reached to 45.7 °C and 6.3 kPa, 218 respectively. RH in no seedling treeshelter was lower than that in treeshelter with 219 seedling and the ambient condition, and the value decreased until 36 % (Figure 5b)

220

#### 221 Light conditions inside and outside treeshelters

Inside PAR (PAR<sub>in</sub>) increased rapidly in parallel with ambient PAR (PAR<sub>out</sub>) and 222 reached 1100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, and remained around 1000–1100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> during 223 midday (Figure 6a). The ratio of PAR<sub>in</sub> to PAR<sub>out</sub> was 0.86–0.94 from 07:30 to 08:20 224 and around 0.6 during midday in the sunny day. In the cloudy day, *PAR*<sub>in</sub> frequently 225

fluctuated in parallel with  $PAR_{out}$ , and reached approximately 800 µmol m<sup>-2</sup> s<sup>-1</sup> (Figure 6b). Then the ratio of  $PAR_{in}$  to  $PAR_{out}$  was 0.51–0.69 from 7:00 to 18:00.

228

#### 229 Air circulation effect on microclimate in treeshelter

| 230 | During the electric fan activated on the top of the treeshelter, mean $T_{10}$ , $T_{80}$ and            |
|-----|----------------------------------------------------------------------------------------------------------|
| 231 | $T_{130}$ in midday (11:00–14:00) were 18.6 ± 1.1, 21.5 ± 1.4 and 22.9 ± 1.8 °C,                         |
| 232 | respectively. Mean $T_{10}$ , $T_{80}$ and $T_{130}$ in treeshelter without the fan in the midday of the |
| 233 | same day were 22.5 $\pm$ 2.4, 26.0 $\pm$ 3.8 and 33.8 $\pm$ 2.6 °C, respectively. The ambient <i>T</i>   |
| 234 | was 19.3 $\pm$ 1.3 °C at that time. We confirmed that air temperature difference between                 |
| 235 | inside and outside treeshelter decreased by the forced air circulation.                                  |
|     |                                                                                                          |

236

## 237 Discussion

238 PAR<sub>in</sub> increased until 10:00 and kept less fluctuation around midday in sunny 239 days (Figure 6a). Solar radiation angle to shelter wall decreased with increasing solar 240 zenith angle, then relatively stable PAR might be occurred by decreasing light 241 transmittance (Bergez and Dupruz 2009). Even in cloudy days, PAR in the treeshelter reached 800  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> (Figure 6b). This PAR value almost reached light saturation 242 243 point for photosynthesis on Japanese cedar (Kusano et al. 2007). So, sufficient sunlight 244 irradiance reached to Japanese cedar seedlings located inside the treeshelter. 245 Above seedling foliage inside the treeshelters,  $T_{\text{max}}$ ,  $RH_{\text{min}}$ , and  $VPD_{\text{max}}$  were

always higher than the ambient values (Figure 2a, 2c, 2d). These results corresponded

with the previous studies (Potter 1991; Kjelgren 1994; Kjelgren and Rupp 1997; Oliet

and Jacobs 2007; Devine and Harrington 2008; Bergez and Dupruz 2009). After

sunrise, *PAR*<sub>in</sub> increased rapidly, in parallel with *PAR*<sub>out</sub> with high light transmittance in

250 the morning in sunny day (Figure 6a). Air temperature increased rapidly inside 251 treeshelter in the morning (Figure 4a). This result also corresponded with Bergez and 252 Dupruz (2009) which reported that rapid increase of air temperature in morning might 253 be influenced by the high transmittance of solar irradiation through shelter wall when 254 the sunlight perpendicularly irradiated to the shelter wall from low solar zenith angle. 255 Also, we observed the rapid temperature increment in the treeshelter even in cloudy 256 days with lower light transmittance from low PAR. This result meant that scattered light 257 and occasional direct light in cloudy days also increased the air temperature in the 258 treeshelter.

259 After warming the air in treeshelter, ventilation might affect thermal condition. 260 Several studies reported that ventilation reduced increment of air temperature in 261 treeshelter (Swistock et al. 1999; Bergez and Dupraz 2000; Bellot et al. 2002). The 262 treeshelters used in this study had three ventilation holes at the lower part (from 20 to 263 60 cm above the ground), but there were no holes in the upper part. In this study, we 264 confirmed the decrease in air temperature inside the treeshelter due to the enhancement 265 of air circulation by the electric fan. This result indicated that air temperature increment 266 in the upper part of treeshelter might be caused by less air circulation even though the 267 measured points (130 cm height) were near to the upper end of treeshelter. Bergez and 268 Dupruz (2009) mentioned that seedling foliage offered significant resistance to air flow 269 and degreasing ventilation rate in treeshelter. Thus, air retention might be one of the 270 reasons for air temperature increment in the treeshelter.

The  $T_{\text{max}}$  in the upper part of the treeshelter was recorded as 47.9 °C in August 272 2020 (Figure 2a). Extremely high air temperature affects the physiological processes in 273 the plants. Thylakoid membranes are especially sensitive to heat. As air temperature 274 rises, photosystem II is inhibited and then carbon metabolism becomes unbalanced

(Larcher 2003). In this study, the upper part of the seedling foliage was exposed to high
temperature exceeding 40 °C for 9 hours in August (Figure 4a). These conditions might
give heat stress on the photosynthesis of the Japanese cedar seedlings. This condition
occurred in the treeshelters not only in sunny days but also in cloudy days (Figure 3, 4,
6). It seemed severe condition for Japanese cedar seedlings to grow, as Negisi and Satoo
(1961) reported that the photosynthetic rate of Japanese cedar rapidly decreased and the
net assimilation rate was reduced to zero when air temperature exceeded 40 °C.

282 However,  $T_{\text{max-80}}$  and  $VPD_{\text{max-80}}$  in treeshelter did not increase remarkably in the 283 seedling foliage (Figure 4a, 4b, 4e, 4f). Temperature difference between  $T_{\text{max-80}}$  and 284 T<sub>max-out</sub> was only 2.7 °C in August 2020 and VPD<sub>max-80</sub> was lower than VPD<sub>max-out</sub> from 285 July to November 2020 (Figure 2a, 2c). In constant,  $T_{max-130}$  showed remarkably higher 286 values than ambient air during the periods (Figure 2a, 2c). Kjelgren (1994) reported that 287 air temperature in treesheltered seedling foliage showed intermediate values between 288 the ambient and the inside treeshelter, and mentioned that leaf transpiration might affect 289 decrease in temperature in treeshelter. Several studies have stated that transpirational 290 cooling could effectively prevent overheating if sufficient water was available, with 291 leaves remaining 4-6 °C cooler and in extreme cases even 10-15 °C cooler (Larcher 292 2003). We confirmed that T and VPD in the empty treeshelter were higher than those in 293 the treeshelter with seedling (Figure 5a, 5c). These results meant that Japanese cedar 294 seedling reduced the increment of air temperature and VPD in a treeshelter. Even in 295 August, the hottest month, the  $T_{\text{max-80}}$  remained below 40 °C in the seedling foliage (Figures 1a and 4a). Thus, increases in air temperature and VPD in the seedling foliage 296 297 might be prevented by transpirational cooling.

From September, the air temperature difference between  $T_{\text{max-80}}$  and  $T_{\text{max-out}}$ increased, with the difference being 10 °C by January 2021 (Figure 2a). In Kochi City,

300 there tends to be high precipitation during summer and low precipitation during winter 301 (Figure 1a). Previous studies reported that Japanese cedar did not change the water use 302 efficiency under dry treatment, and tended to close their stomata to regulate 303 transpiration and avoid drought-induced damage (Nagakura et al. 2004; Kenzo et al. 304 2021). Low precipitation might affect stomatal opening and hence low transpiration on 305 Japanese cedar seedling. Air temperature in the seedling foliage was higher than that in 306 the ambient air in winter (Figure 2a), perhaps because transpirational cooling might be 307 limited in drought conditions. Monthly precipitation was much lower in August 2020 308  $(92 \text{ mm month}^{-1})$  than in July and September 2020 (952 and 455 mm month $^{-1}$ , 309 respectively) (Figure 1a). This few precipitation in August might cause the decrement of 310 RH and increment of T and VPD in August 2020 (Figure 2c, 2d). When drought 311 conditions occur in a high temperature season, air temperature and VPD in the seedling 312 foliage would also increase and perhaps exceed the critical temperature through 313 limitations on transpirational cooling. Our results also indicated that seedlings might not 314 suffer from severe conditions providing that the moisture conditions were satisfactory, 315 while low rainfall and low irrigation might result in temperature and VPD increases 316 through reduced seedling transpiration. Therefore, it was necessary to examine carefully 317 to install treeshelters in Japanese cedar reforestation sites at soil xeric sites in low 318 precipitation areas.

The  $T_{\text{max-130}}$  and  $T_{\text{max-80}}$  during winter (from December to February) reached 29.8–33.3 °C and 23.9–26.8 °C, respectively (Figure 2a). Warmer temperature might elongate the growth period of the seedlings due to earlier spring flush and later growth halt (Yamamoto et al. 2004). Increment of growth period might affect the growth pattern of Japanese cedar. On the other hand, some studies reported that earlier spring flush and late growth halt sometimes lead to heavy damage on seedlings when it gets

| 325 | colder temperature than usual in treeshelter not only in cool temperate (Akashi and          |
|-----|----------------------------------------------------------------------------------------------|
| 326 | Fukuchi 2003) but also in warm temperate zone (Gillespie and Rathfon 1996). In this          |
| 327 | study, low temperature below zero degree occasionally occurred at research site in           |
| 328 | winter (recorded –7.6 °C in January 2021). So, there is a risk that seedlings have           |
| 329 | damage in winter even in warm temperate zone in western Japan. To evaluate the               |
| 330 | effects of treeshelter installation on Japanese cedar seedlings, it was important to clarify |
| 331 | how the warmer condition throughout a year changes the growth pattern and cold               |
| 332 | resistance on Japanese cedar.                                                                |
|     |                                                                                              |

## 334 Acknowledgements

335 The authors acknowledge the stuff of Shikoku Research Center, Forestry and Forest

336 Products Research Institute for their support to maintain research site.

337

### 338 Funding

339 This study was financially supported by a Research Grant "An improved approach to

340 control deer damage in replanted sites in Kyushu and Shikoku" (#201703) from the

341 Forestry and Forest Products Research Institute.

342

### 343 **References**

Akashi N, Fukuchi M. 2003. Shelters to protect juvenile trees from browsing damage by
Sika deer in Hokkaido. Trans Meet Hokkaido Branch Jpn For Soc. 51: 89–91.
(In Japanese).

Bardon RE, Countryman DW, Hall RB. 1999. Tree shelters reduced growth and
survival of underplanted red oak seedlings in southern Iowa. North J Appl For.
16: 103–107.

| 350 | Barton C, Miller J, Sena K., Angel P, French M. 2015. Evaluating the use of tree        |
|-----|-----------------------------------------------------------------------------------------|
| 351 | shelters for direct seeding of Castanea on a surface mine in Appalachia. Forests        |
| 352 | 6: 3514–3527.                                                                           |
| 353 | Bellot J, Ortiz De Urbina JM., Bonet A, Sánchez JR. 2002. The effects of treeshelters   |
| 354 | on the growth of Quercus coccifera L. seedlings in a semiarid environment.              |
| 355 | Forestry 75: 89–106.                                                                    |
| 356 | Bergez J-E, Dupraz C. 2000. Effect of ventilation on growth of Prunus avium seedlings   |
| 357 | grown in treeshelters. Agr Forest Meteorol. 104: 199-214.                               |
| 358 | Bergez J-E, Dupraz C. 2009. Radiation and thermal microclimate in tree shelter. Agr     |
| 359 | Forest Meteorol. 149: 179–186.                                                          |
| 360 | Burger DW, Forister GW, Kiehl PA. 1996. Height, caliper, growth, and biomass            |
| 361 | response of ten shade tree species to treeshelters. J Arboric. 22: 161-166.             |
| 362 | del Campo AD., Navarro RM, Aguilella A, González E. 2006. Effect of tree shelter        |
| 363 | design on water condensation and run-off and its potential benefit for                  |
| 364 | reforestation establishment in semiarid climates. Forest Ecol Manag. 235: 107-          |
| 365 | 115.                                                                                    |
| 366 | Chaar H, Mechergui T, Khouaja A, Abid H. 2008. Effects of treeshelters and              |
| 367 | polyethylene mulch sheets on survival and growth of cork oak (Quercus suber             |
| 368 | L.) seedlings planted in northwestern Tunisia. Forest Ecol Manag. 256: 722-             |
| 369 | 731.                                                                                    |
| 370 | Devine WD, Harrington CA. 2008. Influence of four tree shelter types on microclimate    |
| 371 | and seedling performance of Oregon white oak and western redcedar. USDA                 |
| 372 | For Serv Pacific NW Res Sta Res Paper PNW-RP-576: 1–35.                                 |
| 373 | Gillespie AR, Rathfon R. 1996. Rehabilitating a young northern red oak planting with    |
| 374 | tree shelters. North J Appl For. 13: 24–29.                                             |
| 375 | Hisatake T. 1999. Verification of temperature increment in the Hexatube. Bull. Wildlife |
| 376 | Tochigi Pref. 26: 7–10 (In Japanese).                                                   |
| 377 | Japan Meteorological Agency. 2021. The meteorological data.                             |
| 378 | https://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 3rd September          |
| 379 | 2021).                                                                                  |
| 380 | Jones RH, Chappelka AH, West DH. 1996 Use of plastic shelters for low-cost              |
| 381 | establishment of street trees. South J Appl For. 20: 85–89.                             |

| 382 | Kenzo T, Inoue Y, Araki MG, Kawasaki T, Kitaoka S, Tsurita T, Sakata T, Saito S.     |
|-----|--------------------------------------------------------------------------------------|
| 383 | 2021. Effects of throughfall exclusion on photosynthetic traits in mature            |
| 384 | Japanese Cedar (Cryptomeria japonica (L. f.) D. Don.). Forests 12, 12, 971.          |
| 385 | https://doi.org/10.3390/f12080971                                                    |
| 386 | Kerr G. 1996. The history, development and use of tree shelters in Britain. In:      |
| 387 | Proceedings of the tree shelter conference. June 20–22, 1995, Harrisburg, PA.        |
| 388 | USFS Northeastern Forest Experiment Station, Gen Tech Report, NE-221: 1-4.           |
| 389 | Kjelgren R. 1994. Growth of Kentucky coffeetree in protective shelters during        |
| 390 | establishment. HortScience 29: 777–780.                                              |
| 391 | Kjelgren R, Rupp LA. 1997. Establishment of treeshelters I: Shelters reduce growth,  |
| 392 | water use, and hardiness, but not drought avoidance. HortScience 32: 1281-           |
| 393 | 1283.                                                                                |
| 394 | Kusano E., Sakuta K., Kobayashi, H. 2007. Photosynthetic characteristics of current- |
| 395 | year shoots on Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis                 |
| 396 | obtuse) young tree planted on a slope. Kyushu J For Res 60: 72-74. (In               |
| 397 | Japanese)                                                                            |
| 398 | Larcher W. 2003. Physiological Plant Ecology. 4th Edition. Springer-Verlag. pp. 514. |
| 399 | Maruyama T. 2001. Measurement of temperature and humidity in treeshelter. Bull.      |
| 400 | Wildlife Tochigi Pref. 28: 20–26 (In Japanese).                                      |
| 401 | Masaki T, Oguro M, Yamashita N, Otani T, Utsugi H. 2017. Reforestation following     |
| 402 | harvesting of conifer plantations in Japan: Current issues from silvicultural and    |
| 403 | ecological perspectives. Reforesta 3: 125-142.                                       |
| 404 | Mayhead GJ, Boothman IR. 1997. The effect of treeshelter height on the early growth  |
| 405 | of sessile oak (Quercus petraea (Matt.) Liebl.). Forestry 70: 151-155.               |
| 406 | Nagakura J, Shigenaga H, Akama A, Takahashi M. 2004. Growth and transpiration of     |
| 407 | Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis              |
| 408 | obtusa) seedlings in response to soil water content. Tree Physiol. 24: 1203-         |
| 409 | 1208.                                                                                |
| 410 | Nakagawa S. 1996. Growth effects of trees with tree-shelter in Tanzawa. Bull.        |
| 411 | Kanagawa Pref For Res Inst. 22: 19–28. (In Japanese).                                |
| 412 | Nakamura M, Amikura K. 1998. On prevention from browsing damage of deer to           |
| 413 | planted trees by tube methodHeading for coexistence of deer with forestry-           |
| 414 | Appl For Sci. 7: 75–78. (In Japanese with English summary)                           |

- 415 Negisi K, Satoo T. 1961 Effect of temperature upon photosynthesis and respiration of 416 Akamatu (Pinus densiflora SIEB. et Zucc.), Sugi (Cryptomeria japonica D. 417 DON.) and Hinoki (Chamaecyparis obtusa SIEB. et Zucc.). J Jpn For Soc. 43: 418 336–343. (In Japanese with English summary). 419 Nomiya H, Abe T, Kanetani S, Yamagawa H, Otani T, Sakai A, Yoneda R. in press 420 Survival and growth of Japanese cedar (Cryptomeria japonica) planted in tree 421 shelters to prevent deer browsing: a case study in southwestern Japan. J For Res. 422 Oliet JA., Jacobs DF. 2007. Microclimatic conditions and plant morpho-physiological
- 423 development within a tree shelter environment during establishment of *Quercus*424 *ilex* seedlings. Agr Forest Meteorol. 144: 58–72.
- 425 Oliet JA, Blasco R, Valenzuela P, Melero de Blas M, Puértolas J. 2019. Should we use
  426 meshes or solid tube shelters when planting in Mediterranean semiarid
  427 environments? New Forests 50: 267–282.
- 428 Potter MJ. 1991. Treeshelters. Forestry Commission Handbook 7. HMSO Publication
  429 Center, 48pp.
- 430 Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL. 2010. Is light the key factor
  431 for success of tube shelters in forest restoration plantings under Mediterranean
  432 climates? Forest Ecol Manag. 260: 610-617.
- Sharpe WE, Swistock BR, Mecum KA, Demchik MC. 1999. Greenhouse and field
  growth of northern red oak seedlings inside different types of treeshelters. J
  Arboric. 25: 249–257.
- 436 Skousen J, Cook T, Wilson-Kokes L, Pena-Yewtukhiw E. 2013. Survival and growth of
  437 chestnut backcross seeds and seedlings on surface mines. J Environ Qual. 42:
  438 690–695.
- 439 Swistock BR, Mecum KA, Sharpe WE. 1999. Summer temperatures inside ventilated
  440 and unventilated brown plastic treeshelters in Pennsylvania. North J Appl For.
  441 16: 7–10.
- 442 Tuley G. 1985. The growth of young oak trees in shelters. Forestry 58: 181–195.
- Yamamoto M., Nakashima A., Okuda A., Okuda H., Kushida T. 2004. Effects of yearround warmer condition to the growth and phenology of *Cryptomeria japonica*.
  Proc Env Eng Res. 41: 645-650. (In Japanese with English summary)

446 Figure legends

| 447 |                                                                                             |
|-----|---------------------------------------------------------------------------------------------|
| 448 | Figure 1. Monthly precipitation and means of the maximum and the minimum air                |
| 449 | temperatures in Kochi City from March 2020 to February 2021 (Kochi Local                    |
| 450 | Meteorological Observatory, Japan Meteorological Agency, 2021)                              |
| 451 |                                                                                             |
| 452 | Figure 2. Seasonal changes in the monthly means of the daily (a) maximum air                |
| 453 | temperature ( $T_{max}$ ), (b) minimum air temperature ( $T_{min}$ ), (c) minimum relative  |
| 454 | humidity ( $RH_{min}$ ), and (d) maximum vapor pressure deficit ( $VPD_{max}$ ) in three    |
| 455 | treeshelters during March 2020 to February 2021. 'Outside,' '10,' '80,' and                 |
| 456 | '130' show the measurements for ambient air, 10 cm, 80 cm, and 130 cm heights               |
| 457 | inside treeshelters, respectively. Asterisks represent significant difference at $p =$      |
| 458 | 0.05 level and NS represents no significant difference between RH at 80 cm                  |
| 459 | height and ambient condition (t-test).                                                      |
| 460 |                                                                                             |
| 461 | Figure 3. Mean values of (a) maximum air temperature $(T_{max})$ and (b) maximum vapor      |
| 462 | pressure deficit ( $VPD_{max}$ ) in sunny (4 days), cloudy (6 days) and rainy days (5       |
| 463 | days). 'Outside,' '10,' '80,' and '130' show the measurements for ambient air,              |
| 464 | 10 cm, 80 cm, and 130 cm heights inside treeshelters, respectively. Different               |
| 465 | letters are significantly different at $\alpha = 0.05$ level (Tukey's HSD test). Error bars |
| 466 | represent standard deviation.                                                               |
| 467 |                                                                                             |
| 468 | Figure 4. Diurnal changes in mean (a) air temperature (T), (c) relative humidity (RH),      |
| 469 | and (e) vapor pressure deficit (VPD) in three treeshelters in sunny days (9 days)           |
| 470 | in August 2020. Diurnal change of (b) T, (d) RH and (f) VPD in cloudy day (1                |
| 471 | day) in August 2020. 'Outside,' '10,' '80,' and '130' show the measurements for             |
| 472 | ambient air, 10cm, 80cm, and 130cm heights inside treeshelters, respectively.               |
| 473 |                                                                                             |
| 474 | Figure 5. Diurnal changes in mean (a) air temperature (T), (b) relative humidity (RH),      |
| 475 | and (c) vapor pressure deficit (VPD) at 80 cm height inside treeshelters with and           |
| 476 | without a seedling, and ambient condition in sunny days in August 2020.                     |
| 477 |                                                                                             |

- 478 Figure 6. Diurnal changes in photosynthetic active radiation (PAR) at 80 cm height
- 479 inside and outside a treeshelter on a (a) sunny day (21 September 2020) and (b)
- 480 cloudy day (20 September 2020).
- 481













