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A B S T R A C T   

Study region: The Terauchi catchment, southwestern Japan 
Study focus: This paper evaluates two gauge-merged precipitation datasets derived from weather 
radars (R/A) and satellites (GsMAP_G) based on their capability to improve streamflow simula-
tion using the Soil and Water Assessment Tool (SWAT) model. A third dataset includes mea-
surements from local rain gauges used for producing the R/A database but not the GsMAP_G 
product was prepared for comparison reasons. The R/A and GsMAP_G data were first compared to 
gauge observations. The performance and prediction uncertainty of the SWAT model forced by 
the evaluated datasets were subsequently quantified and compared. 
New hydrological insights for the region:  The R/A dataset overestimated the precipitation, while the 
GsMAP_G underestimated it. After calibration, the R/A performed best (NSE = 88–91%), followed 
by the Gauge (NSE = 84%) and GsMAP_G (NSE = 54%) scenarios. The R/A product improved the 
overall simulation performance by 6.50% and 62.40% in terms of NSE and absolute percent bias 
compared to the Gauge model. The performance of the evaluated datasets varied depending on 
streamflow occurrence exceedance probability (OEP). The R/A dataset improved the simulation 
of extremely high (OEP < 1%) and low (OEP > 60%) streamflow events as it resulted in the 
lowest simulation biases and errors. The current investigation suggests the use of the R/A product 
for improving the simulation of daily streamflow, including hydro-climatic extremes.   

1. Introduction 

Hydrological models simulate water balance components to understand the various hydrological processes (Ogden, 2021). These 
tools support managing water resources, forecasting extreme hydrological events (i.e., floods and debris flow), and developing 
mitigation measures (Devia et al., 2015; Li et al., 2018; Singh, 2018; Tan et al., 2020). Therefore, reliable outputs are always sought by 
stakeholders. This need requires a correct representation of models’ inputs at the spatial and temporal scales. Among these parameters, 
precipitation is the key driving force in simulating streamflow dynamics (Tuo et al., 2016) and the primary source of prediction 
uncertainty in many hydrological models (Chao et al., 2018; Yang et al., 2017). Thus, accurate data and adequate representation of 
precipitation variability are crucial for precise simulation outputs and effective decision-making. 
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Balancing between the accuracy and spatial representation of precipitation data in hydrological models is still challenging 
(Dembélé et al., 2020). Indeed, the precipitation is traditionally measured using rain gauges (Sun et al., 2018), which provide accurate 
observations at a point-scale of 20 cm diameter. These measurements are often treated as the “truth” rainfall value (Tapiador et al., 
2017). However, they may become uncertain when the point-scale observations are extended to ungauged areas due to a sparse rain 
gauge network (Deng et al., 2019; Yang et al., 2017). The uncertainty increases in environments with complex terrains (e.g., 
mountainous catchments) and extreme climates (e.g., convective rainfalls, tropical cyclone rainfalls) (Li et al., 2019; Schroeer et al., 
2018; Strauch et al., 2013). Rainfall in such regions presents high spatial and temporal variability, making the assumption of spatially 
uniform rainfall in hydrological models invalid (Cho et al., 2009). In addition, rain gauge measurements may exhibit significant 
negative bias during windy weather and intense rainfall conditions that generate water losses and erratic behavior of the gauge system 
(Cha and Lee, 2021; Tobin and Bennett, 2009; Zhong et al., 2016). These drawbacks lead to an inaccurate spatial representation of the 
precipitation that may impact the simulation outputs. 

Advances in remote-sensing technologies (weather radars and satellites) make up for the limitations of rain gauges by allowing a 
spatial observation of the precipitation. These technologies provide rainfall estimates with high spatial and temporal resolutions at 
global and regional scales (Sun et al., 2018) that can emerge as promising alternatives for gauge-based data in hydrological models. 
Several studies have evaluated the performance of radar and satellite precipitation products using the Soil and Water Assessment Tool 
(SWAT) model (Arnold et al., 1998), as it is one of the most acknowledged models (Tan et al., 2021 and references therein). The 
studies’ findings showed the usefulness of these alternatives in simulating hydrological processes. However, it has been stressed that 
satellites and radars only based datasets resulted in unsatisfactory daily streamflow simulation performances due to substantial rainfall 
estimation errors. 

Merging the advantages of rain gauges in radar and satellite products is an effective strategy for overcoming precipitation un-
certainty while preserving spatial coverage (Ochoa-Rodriguez et al., 2019). Different methods and algorithms applied to radar and 
satellite products have remarkably improved the quality of precipitation estimates and reduced the substantial rainfall underesti-
mation (Chao et al., 2018; Goudenhoofdt and Delobbe, 2009; Li et al., 2015; McKee and Binns, 2016; Yang et al., 2017). The 
Gauge-calibrated Global Satellite Mapping of Precipitation (GsMAP_G) developed by the Japan Aerospace Exploration Agency (JAXA) 
and the Radar/rain gauge Analyzed precipitation (R/A) produced by the Japanese Meteorological Agency (JMA) are two 

Fig. 1. Geographic location of the Terauchi catchment (a) and SWAT input data (b–e).  
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gauge-merged products commonly used for hydrometeorological forecasting in Japan. Most previous evaluations focused on the 
potential of these datasets to detect and estimate precipitation (e.g., Hirokawa et al., 2020; Ishizaki and Matsuyama, 2018; Mega et al., 
2019; Suzuki et al., 2017; Tashima et al., 2020). The potential of the GsMAP_G in simulating streamflow using the SWAT model was 
evaluated only in a few works and limited over catchments in China and Southeast Asia (Deng et al., 2019; Dinh et al., 2020; Zhang 
et al., 2020), while the potential of the R/A product has not yet assessed. 

In this study, we evaluated the potential of the GsMAP_G and R/A precipitation datasets to simulate daily streamflow using the 
SWAT model in the Terauchi watershed, a forested headwater catchment in southwestern Japan. The SWAT model was also applied 
using a gauge precipitation dataset that served for comparison. The first part of the investigation compares the GsMAP_G and R/A 
datasets with gauge observations at grid and catchment scales. The second part assesses the performances of the SWAT model forced by 
the three precipitation datasets in terms of prediction accuracy and uncertainty. The results of the present investigation should provide 
insights into the potential of the GsMAP_G and R/A products in simulating daily streamflow using the SWAT model in a mountainous 
catchment with an extreme climate. 

2. Study site and precipitation datasets 

2.1. The Terauchi catchment 

This study focused on the Terauchi watershed in southwestern Japan (Fig. 1a). The catchment was selected because it is a 
headwater of the Chikugo river basin, and therefore its streamflow is not significantly influenced by hydropower production or 
anthropogenic activities. Furthermore, the area experienced frequent convective rainstorms during the rainy season in summer 
(May–July) and the Typhoon season in autumn (August–October). The catchment drains approximately 51 km2 to the Terauchi dam, 
constructed downstream for flood protection and water supply purposes. The study area is dominated by dense evergreen forests 
(around 88%) (FRS-Evergreen in Fig. 1d) and brown forest soils (approximately 92%) (Fig. 1e), with an elevation varying between 115 
and 725 m a.s.l (Fig. 1c). The climate is humid and subtropical with rainy summers. Mean annual precipitation and average tem-
perature recorded from 2010 to 2019 at the Asakura station, located approximately 10 km to the southwest of the catchment, were 
2058 mm and about 16 ◦C, respectively. 

2.2. Precipitation datasets 

2.2.1. Gauge precipitation dataset 
In Japan, the rain gauge network comprises thousands of rain gauges operated by the Japanese Meteorological Agency (JMA) and 

the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) of Japan. There are approximately 1300 weather stations, with an 
average interval of 17 km, operated by the JMA (Kawase et al., 2019). This network is known as the Automated Meteorological Data 
Acquisition System (AMeDAS). The MLIT network comprises about 2800 rain gauges used for flood control and river management. 
Only four rain gauges are located in and around the Terauchi catchment and, accordingly, were selected in the current study (Fig. 1b). 
Rainfall data recorded before 2010 by one of the selected rain gauges are incomplete. Therefore, we focused on the period 2010–2019 
as an assessment period to ensure the completeness of all rainfall data. 

2.2.2. Radar/rain gauge analyzed precipitation dataset 
The Japanese weather radar network includes 46 C-band radars operated by the JMA and MLIT. Weather radars emit microwaves, 

within a radius of hundreds of kilometers, via a rotating antenna and observe the reflected echo intensities and Doppler velocities every 
five minutes. The backscattered signals are processed, converted into precipitation estimates, and merged with ground rain gauges to 
produce the Radar/Rain gauge-Analyzed precipitation (R/A) dataset (Nagata, 2011). This product provides hourly cumulative rainfall 
with a spatial resolution of 5 km (1988–2001), 2.5 km (2001–2005), and 1 km (from 2006). The 5-km and 2.5-km R/A datasets were 
produced based on data from 20 weather radars and the AMeDAS rain gauges. Since 2006, the spatial resolution and prediction ac-
curacy of the R/A dataset has been improved due to including data from 26 weather radars managed by MLIT and more rain gauges 
operated by MLIT and local governments in the processing algorithm (Ishizaki and Matsuyama, 2018). Suzuki et al. (2017) assessed the 
accuracy of the 1-km R/A dataset by comparing daily precipitation estimates with rainfall measurements at 498 rain gauges not 
included in the R/A calibration algorithm from 2006 to 2013 and found a good correlation coefficient (r > 0.87). Therefore, it may 
accurately represent the spatial precipitation variability within the study area. For evaluating the potential of the 1-km R/A dataset in 
streamflow simulation, we extracted the time series data (2010–2019) for each grid located inside and around the Terauchi catchment 
(Fig. 1b). Then, we used it as rainfall inputs in the SWAT model. 

2.2.3. Gauge-adjusted Global Satellite Mapping of Precipitation dataset 
The Global Satellite Mapping of Precipitation (GsMAP) project combines multiple satellite-based precipitation estimates from 

passive microwave sensors and infrared radiometers to develop global hourly rainfall maps with a resolution of 0.1◦ (Kubota et al., 
2009). It is operated by the Japan Aerospace Exploration Agency (JAXA) under the Global Precipitation Measures (GPM) mission. The 
GsMAP project provides different precipitation products (standard, near-real-time, real-time, and reanalyzed) with and without gauge 
adjustment. These databases are produced by algorithms retrieving global precipitation estimates from satellites. We employed the 
standard gauge-calibrated GsMAP product (GsMAP_G) produced by the GsMAP algorithm Ver. 6.0 as input for the SWAT model by 
extracting the times series for each grid cell located inside and around the study area for 2010–2019 (Fig. 1b). This retrieval algorithm 
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uses various attributes derived from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) to improve precipi-
tation detection. Furthermore, it adjusts the 24 h accumulated precipitation estimates to daily rain rates provided by the NOAA 
Climate Prediction Center (CPC) Gauge-based Analysis of Global daily precipitation data (Tashima et al., 2020) to improve precipi-
tation estimation. This latter includes more than 16 000 rain gauges (Chen et al., 2008), and none of them is located in or around our 
study area. Further information on the algorithm used for calibrating precipitation estimates is available in the algorithm theoretical 
basis document developed by the algorithm development team in JAXA (JAXA, 2014). 

3. Methods 

3.1. SWAT model 

3.1.1. General description 
The SWAT model, developed by the Agricultural Research Service of the United States Department of Agriculture (USDA), is a semi- 

distributed process-based model (Arnold et al., 1998). It is operated on a watershed scale to simulate the time-continuous changes in 
hydrological processes, erosion, vegetation yield, and water quality and evaluate the impacts of land management practices. 

The model requires geospatial (topographic, land-use, and soil data) and temporal data (precipitation, temperature, wind speed, 
humidity, and solar radiation). First, the model uses the topographic data for delineating the study watershed after defining the 
watershed outlet. Then, it discretizes the watershed into multiple sub-basins depending on the Threshold Drainage Area (TDA). TDA 
reflects the minimum upstream drainage area for channel origination (Lin et al., 2020). Subsequently, each sub-basin is subdivided 
into multiple lumped land units comprising unique land cover type, soil class, and slope combinations, known as Hydrological 
Response Units (HRUs). 

All the processes in the SWAT model (e.g., hydrology, sediment dynamics, plant growth, and nutrients…) are governed by the 
water balance equation (Arnold et al., 2012) (Eq. 1): 

SWt = SW0 +
∑t

i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1)  

where SWt is the final soil water content (mm), SW0 is the initial soil water content on day i (mm), t is the time (days), Rday is the 
amount of precipitation on day i (mm), Qsurf is the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on 
day i (mm), Wseep is the amount of water entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of return 
flow on day i (mm). Detailed information on the simulation methods is available in the theoretical documentation of the SWAT model 
(Neitsch et al., 2011). 

3.1.2. Model setup and inputs 
This study uses the ArcSWAT 2012 interface (version 2012.10_4.24) to set up and parameterize the SWAT model. The model inputs 

are listed and described in Table 1. Soil information was obtained from the soil database of the National Institute for Agro- 
Environmental Sciences, Japan (Obara et al., 2016). Additionally, the soil bulk density was estimated using Nanko et al. (2014) 
method. Based on the DEM analysis, a TDA of 100 ha was used for discretizing the study area into 18 sub-basins. Subsequently, the 
thresholds of HRU definition were set to 10% for land use, soil, and slope classes, resulting in 72 HRUs. 

Three precipitation datasets (Gauge, R/A, GsMAP_G), as described in Section 2.2, have been used in this work. We applied the 
SWAT model on a daily time step from 2010 to 2019. The first two years served as an equilibrium period to stabilize the initial soil 
water conditions (Abbaspour et al., 2015). In each simulation, the surface runoff was estimated using the curve number method 
developed by the Soil Conservation Service (SCS, 1972). The evapotranspiration was calculated using the Hargreaves method 
requiring only temperature data (Hargreaves et al., 1985). 

3.1.3. Model calibration and validation 
The model was calibrated from 2012 to 2015 and validated from 2016 to 2019 for daily streamflow, using observed daily discharge 

data at the outlet of the Terauchi catchment. These two durations were selected based on the average daily streamflow observed during 

Table 1 
Input data for the SWAT model.  

Input data Format Resolution 
(spatial/ 
temporal) 

Description and sources 

Topographic Raster 10 m / NA A digital elevation model (DEM) developed by the Geospatial Information Authority of Japan (GSI) from 1/25 000 
topographic maps. 

Land use Raster 30 m / NA The high-resolution land use and land cover map products (version 16.09), developed by the Japan Aerospace 
Exploration Agency (JAXA) from multiple remote sensed data. Available on https://www.eorc.jaxa.jp/ALOS/en/ 
lulc/lulc_jpn.htm. 

Soil Raster 10 m / NA The new soil map of Japan (1/200 000 scale) developed by the National Institute for Agro-Environmental Sciences 
in Japan (Obara et al., 2016) 

Climate Text 1 station/ daily The temperature and wind speed data are provided by the Asakura station (operated by the JMA)  
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both periods, which did not change significantly. Before the calibration phase, we performed a sensitivity analysis for several pa-
rameters that control the hydrological processes in the SWAT model. The objective was to avoid over-parameterization and determine 
the sensitive parameters in the Terauchi catchment (Arnold et al., 2012). The analysis was done using the Latin hypercube 
one-at-a-time (LH-OAT) method included within the Sequential Uncertainty Fitting (SUFI2) procedure of the SWAT Calibration Un-
certainty Program (SWAT-CUP). The LH-OAT assesses the model sensitivity to a given parameter by varying the values of this 
parameter within a predefined uncertainty range while keeping the other parameters constant. A detailed description of the method is 
available in Abbaspour (2014). 

The baseflow recession factor (ALPHA_BF) that partitions the total streamflow into surface runoff and baseflow was the most 
sensitive parameter in the Terauchi catchment. To reliably adjust this parameter and avoid the impact of auto-calibration on 
streamflow simulation, the ALPHA_BF was fixed to 0.0415 in the three evaluated scenarios. This value was retrieved using the 
automated flow separation method developed by Arnold et al. (1995) and the 10-year streamflow observations. It indicates slow 
drainage and large storage in shallow aquifers (Wu and Johnston, 2007). The auto-calibration step involved the other sensitive pa-
rameters that impact streamflow modeling by controlling the different hydrological processes (Table 2). It was performed, with four 
iterations of 1000 simulations each, using the SUFI2 method. In the first iteration, the initial parameters’ intervals were quantified to 
physically-reasonable uncertainty based on SWAT documentation (Neitsch et al., 2011). After each iteration, these intervals were 
narrowed to the new uncertainty ranges suggested by the SUIFI2 procedure. 

The validation step evaluates the capability of the calibrated model to make sufficiently accurate streamflow simulations (Arnold 
et al., 2012). It was performed using the fitted parameters obtained after the fourth calibration iteration and observed streamflow for 
2016–2019. 

3.2. Comparison of the precipitation datasets 

We evaluated the R/A and GsMAP_G precipitation datasets at grid and catchment scales for 2010–2019. The daily data at four grid 
points, where the rain gauges are located, were extracted and compared with the gauge measurements using three quantitative sta-
tistics: (1) the Pearson correlation coefficient (r) measures the degree of collinearity; (2) the percent bias (PBIAS) computes the average 
tendency of the merged datasets. Here, negative values mean that the GsMAP_G or R/A data are higher than the gauge measures; (3) 
the Root Mean Square Error (RMSE) computes the differences. The equations used for calculating these metrics are available in 
Appendix A. Furthermore, we computed three categorical statistic metrics to assess the rainfall detection capabilities of the R/A and 
GsMAP_G products. These indicators are the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI). 
The POD reveals the fraction of correctly detected precipitation occurrences. The FAR indicates the fraction of falsely detected rains. 
The CSI represents the overall rains correctly detected by the GsMAP or R/A products. The calculation methods are based on a 2 × 2 
contingency table (Wilks, 2011) and are detailed in Appendix A. 

At the catchment scale, we first examined the daily precipitation inputs in the different models based on the empirical cumulative 
distribution function (CDF). Then, we evaluated the monthly variation of PBIAS and RMSE that compared daily precipitation inputs 
from the R/A and GsMAP_G products with those derived from the Gauge dataset. 

3.3. Hydrological evaluation of the precipitation datasets 

We evaluated the usefulness of the two gauge-merged precipitation datasets in streamflow simulation by comparing the outputs of 
the R/A and GsMAP_G scenarios to the Gauge scenario and streamflow observations. The comparison examines the model performance 
and prediction uncertainty. 

Table 2 
Hydrological parameters used in the auto-calibration process and their controls on streamflow simulation (“v” means a replacement, and “r” stands for 
a relative change to the initial parameters values).  

Parameter Controls Default value Initial calibration ranges 

r__CN2 Surface runoff volume in the total streamflow 55 – 92 ±50% 
r__SOL_AWC Soil water content 0.078 – 0.1 ±50% 
r__SOL_BD Soil water content 0.9 – 1.14 ±50% 
r__SOL_K Amount of water that percolates out of the soil profile 784 – 1166 ±50% 
r__SLSUBBSN Overland flow time of concentration 9.1 – 91 ±50% 
r__HRU_SLP Overland flow time of concentration 0.03 – 0.8 ±50% 
v__OV_N Overland flow time of concentration 0.01 – 0.1 0.01–30 
v__EPCO Water uptake by plants 1 0 – 1 
v__ESCO Soil water evaporation rate 0.95 0 – 1 
v__LAT_TTIME Lateral flow contribution to the total streamflow 0 0 – 180 
v__CH_N2 Channel flow time of concentration 0.014 0.025 – 0.15 
v__CH_K2 Volume of streamflow lost via transmission losses from the main channel 0 6 – 76 
v__ALPHA_BNK Bank storage contribution to the total streamflow via return flow 0 0 – 1 
v__GWQMN Groundwater flow contribution to the total streamflow 1000 0 – 5000 
v__GW_DELAY Volume of water recharged to shallow and deep aquifers 31 1 – 500 
v__REVAPMN Volume of water removed from the shallow aquifer by evapotranspiration 750 0 – 1000  
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3.3.1. Model performance 
The model performance was assessed by evaluating the goodness of fit between simulated and observed streamflow using four 

statistical indicators: (1) the Nash and Sutcliffe Efficiency (NSE) coefficient that calculates the quantity differences between the 
simulated streamflow and the observations (Nash and Sutclifee, 1970). (2) the PBIAS that indicates an overestimation in the case of a 
negative value; (3) the RMSE-observations standard deviation ratio (RSR) static that standardizes the RMSE between simulated and 
observed streamflow to the standard deviation of the observations; (4) the coefficient of determination (R2) that describes the degree of 
collinearity between simulated and observed streamflow. Calculation equations are available in Appendix A. According to the values of 
these four statistical indicators, the model performance was further judged following the performance evaluation criteria recom-
mended by Moriasi et al., (2007, 2015). For instance, the model performance is deemed as “satisfactory” for flow simulation if 
0.60 < R2 ≤ 0.75, 0.50 < NSE ≤ 0.70, ± 10 < PBIAS ≤ ± 15, and 0.60 < RSR ≤ 0.70. 

3.3.2. Model prediction uncertainty 
Uncertainties in streamflow simulation can be due to uncertain model inputs and parameters (Abbaspour et al., 2015). Biases in 

precipitation accuracy and spatial representation account for most of this uncertainty (Chao et al., 2018; Gassman et al., 2007). 
Therefore, it is crucial to evaluate the prediction uncertainty associated with the different precipitation inputs. 

In each scenario, the streamflow prediction uncertainty was expressed as the final intervals of the calibrated parameters used by the 
SUIFI2 procedure at the final iteration of model calibration. The SUIFI2 algorithm considers the 95% prediction uncertainty (95PPU) at 
2.5% and 97.5% of the cumulative probability distribution of the simulated streamflow derived through the Latin Hypercube sampling. 
Accordingly, the model performance is represented by a set of good solutions expressed by the 95PPU instead of a single solution (best 
simulation) (Abbaspour et al., 2015). The prediction uncertainty is assessed by computing two statistical indices: P-factor and R-factor 
(Abbaspour et al., 2004). P-factor represents the fraction of observed streamflow enveloped by the 95PPU. A P-factor = 1 indicates that 
all the observations are bracketed by the 95PPU band. R-factor measures the thickness of the 95PPU band. It computes the ratio of the 
average width of the 95PPU and the standard deviation of the observed streamflow. A prediction uncertainty is acceptable if P-factor 
> 0.70 and R-factor < 1.5 (Abbaspour et al., 2015). 

Fig. 2. Scatterplots of daily precipitation data from the Gauge and R/A datasets.  
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4. Results 

4.1. Comparison of precipitation datasets 

The scatter plots in Figs. 2 and 3 compare daily precipitation data from the R/A and GsMAP_G datasets with rain gauge observations 
for 2010–2019. The precipitation data estimated by the two gauge-merged datasets were in good agreement with those measured by 
rain gauges (r > 90% for the R/A dataset and r > 80% for the GsMAP_G dataset). The R/A dataset overestimated daily rainfall (PBIAS 
= − 38.28 to − 15.89%). Conversely, the GsMAP_G dataset underestimated the precipitation (PBIAS = 4.30–18.73%), except at the 
Yoshii station. This underestimation was well noted for precipitation > 100 mm/d and convective rainfall events experienced in the 
area (e.g., rainfall events of 2017/07/05, 2012/07/14, and 2010/07/13). Compared to the R/A dataset, the GsMAP_G dataset 
exhibited larger errors in estimating the precipitation (RMSE = 8.92–11.64 mm/d). 

The categorical indicators computed using a rain/no-rain threshold of 1 mm at the four rain gauges are illustrated in Fig. 4. The R/A 
dataset outperformed the GsMAP_G product in detecting rainfall during the observation period. The R/A dataset exhibited good 
rainfall detection scores (average POD = 0.87, average FAR = 0.17, average CSI = 0.75), demonstrating its ability to correctly detect 

Fig. 3. Scatterplots of daily precipitation data from the Gauge and GsMAP_G datasets.  

Fig. 4. Categorical statistic metrics for daily precipitation data from the R/A and GsMAP_G products.  

S. Mtibaa and S. Asano                                                                                                                                                                                              



Journal of Hydrology: Regional Studies 42 (2022) 101134

8

rainy days. On the other hand, the GsMAP product presented lower rainfall detection accuracy with an average POD of 0.50 and an 
average FAR of 0.40, resulting in a low average CSI of 0.37. 

At the catchment scale, the daily precipitation inputs averaged over the Terauchi catchment from the three datasets are compared 
in Fig. 5. The three precipitation datasets exhibited different occurrence probabilities for dry and rainy days. The highest difference 
was for the occurrence of dry days (precipitation = 0). The R/A and GsMAP_G datasets indicated a lower chance of dry days (about 
40%) than the gauge dataset (about 60%). The occurrence probabilities of rainy days with less than 200 mm of precipitation did not 
differ significantly (Fig. 5b). The fractions of rainy days with extreme daily precipitation (rainfall > 200 mm/day) were low. Compared 
to the rain gauge scenario, the R/A dataset overestimated the intensities of these extremes, while the GsMAP_G product 

Fig. 5. Empirical cumulative distributions of daily precipitation of the Gauge, R/A, and GsMAP_G inputs in the Terauchi catchment.  

Fig. 6. Box and whisker plot of differences between daily precipitation averaged over the Terauchi catchment from the two merged precipitation 
products and the Gauge dataset in terms of PBIAS (a) and RMSE (b) (yellow line shows the median, blue plus mark ‘+’ displays the mean). 
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underestimated them. 
Fig. 6 further examines the monthly variation of PBIAS and RMSE that compared daily precipitation inputs from the R/A and 

GsMAP_G products with those derived from the Gauge dataset. The R/A product introduced daily rain rates over the Terauchi 
catchment higher than the Gauge dataset regardless of the season, as shown by the negative mean PBIAS. In the case of the GsMAP_G 
dataset, daily rainfall averaged over the study area varied between overestimated and underestimated, with a significant underesti-
mation during July and August (about 20%). The GsMAP_G dataset resulted in larger daily precipitation errors than the R/A product, 
regardless of the season. These errors are significant during the rainy and Typhoon seasons (May–October). In July, when many 
extreme rainfalls occurred over the study area, the mean daily precipitation RMSE was about 19 mm/h for the GsMAP_G, while it was 
around 9 mm/d for the R/A scenario. According to the differences in precipitation inputs, we expect disparate simulated hydrographs 
compared to streamflow observations. 

4.2. Performance of the SWAT model using different precipitation datasets 

Fig. 7 compares the observed and simulated daily streamflow for the three scenarios during calibration and validation periods. 
Overall, all simulations captured the seasonal patterns of daily streamflow. The hydrographs showed a satisfactory agreement between 
daily observed and simulated streamflow. All the simulations underestimated flow peaks greater than 60 m3/s, which generally 
present low occurrence probability. The tendency of the three precipitation datasets to underestimate these flow peaks was as the 
following: GsMAP_G greater than Gauge, greater than R/A. The zoom-in plots of the hydrographs on July 2012, July 2017, July 2018, 
and August 2019 clearly show this underestimation and are presented in Figure B1 (Appendix B). 

Table 3 summarizes the values of statistical indicators used for evaluating the performances of the three simulation scenarios. The 
Gauge and R/A-based simulations outperformed the GsMAP_G in simulating daily streamflow at the outlet of the Terauchi catchment 
during the calibration and validation periods. The NSE values were between 0.84 and 0.91 for the Gauge and R/A models, while the 
NSE value was 0.54 for the GsMAP_G scenario. The Gauge and GsMAP_G scenarios underestimated daily streamflow by 16.70–20.00% 
and 29.30–35.80%, respectively. Conversely, the R/A dataset resulted in an overestimation of 2.60–11.20%. According to the rec-
ommendations of Moriasi et al., (2007, 2015), the R/A scenario achieved “very good” performances in simulating streamflow trends 
(R2 and NSE) and residual variations (RSR) and “satisfactory ” performance in simulating average magnitudes (PBIAS). This latter 

Fig. 7. Simulated and observed daily streamflow during calibration (a) and validation (b) periods.  

Table 3 
Performance of the three precipitation datasets in streamflow simulation.  

Rainfall dataset Calibration: 2012–2015 Validation: 2016–2019 

NSE PBIAS RSR R2 P-factor R-factor NSE PBIAS RSR R2 P-factor R-factor 

Gauge  0.84  16.70  0.39  0.88  0.65  0.33  0.84  20.00  0.40  0.89  0.60  0.22 
R/A  0.88  -11.20  0.35  0.88  0.71  0.35  0.91  -2.60  0.30  0.92  0.69  0.23 
GsMAP_G  0.54  35.8  0.68  0.59  0.52  0.29  0.54  29.30  0.68  0.61  0.57  0.22  
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improved to “very good” during the validation period. The gauge-based model reached “very good” performances in terms of NSE and 
RSR and “good” performance in terms of R2. However, it showed a “non-satisfactory” performance in simulating average magnitudes 
(PBIAS). On the other hand, the performance of the GsMAP_G model was “satisfactory” in simulating streamflow trends (R2 and NSE) 
and residual variation and “non-satisfactory” in simulating average magnitudes. 

Fig. 8 shows that the three precipitation datasets resulted in different streamflow CDF curves, especially for daily discharge less 
than 6 m3/s (more than 90% of streamflow records) and daily flow greater than 60 m3/s. For daily streamflow lower than 1 m3/s, the 
cumulative fractions exhibited by the simulations were higher than the observations. From 1 m3/s, the CDF of the R/A product 
deviated from the others to show lower cumulative fractions of simulated daily streamflow. These differences suggested that the 
performance of the evaluated precipitation datasets varied depending on streamflow intensity. Therefore, to better understand this 
variation, we categorized the daily observed streamflow into four ranges (Talchabhadel et al., 2021), based on the occurrence ex-
ceedance probability (OEP): 1) extremely high (OEP = 0–1%), high (OEP = 1–10%), average (OEP= 10–60%), and low (OEP=
60–100%). For each streamflow zone, the performance of each scenario was evaluated by computing the PBIAS and RMSE between 
simulated and observed discharge (Table 4). 

The three models underestimated extremely high streamflow, with an advantage to the R/A simulation that represented the lowest 
biases (PBIAS = 17.45%) and errors (RMSE = 16.55 m3/s). For the high and average streamflow ranges, the Gauge and GsMAP_G 
datasets underestimated daily streamflow (PBIAS = 8.85–25.74%), with an RMSE range of 0.83–4.84 m3/s. Conversely, the R/A model 
overestimated daily streamflow by 9.10–20.25%, as shown in the PBIAS values, and introduced simulation RMSE of 1.07–3.33 m3/s. 
For the low streamflow category, the Gauge and GsMAP_G scenarios significantly underestimated daily streamflow (PBIAS = 35.24% 
and 48.05%, respectively). On the other hand, the R/A dataset resulted in a PBIAS of − 3.10%, meaning an overestimation of daily 
streamflow. 

4.3. Uncertainty in streamflow simulation 

The uncertainty analysis was performed for the three simulations using the SUFI2 procedure. The values of P-Factor and R-Factor, 
computed for evaluating the prediction uncertainty, are shown in Table 3. The three tested datasets presented a narrow 95PPU en-
velope (R-Factor = 0.22–0.35) during the calibration and validation periods. Considering the P-factor that measures the fraction of 
observed streamflow within the 95PPU band, the R/A-based model exhibited the lowest prediction uncertainty with a P-factor of 0.71 
for the calibration step and 0.69 for the validation step. The Gauge and GsMAP_G models did not reach an acceptable prediction 
uncertainty being their P-factor was less than 0.70. 

The fitted value and range of uncertainty of each parameter used in the calibration process are shown in Fig. 9. Overall, the three 
precipitation datasets used in this study resulted in different fitted values and uncertainty ranges. CN2, the most sensitive parameter of 
the auto-calibrated parameters, was raised by more than 35% in all models to increase surface runoff. Similar results were shown for 
the soil bulk density (Soil_BD) parameter that controls surface runoff and baseflow. In all simulations, the value of Sol_BD was raised by 
more than 45% to increase the surface runoff and decrease base flow. This increase was accompanied by a significant reduction of the 
soil available water capacity (SOL_AWC) and a high overland Manning “n” coefficient (OV_N) that influences the timing and volume of 
flow peaks. 

Fig. 8. Empirical cumulative distributions of daily simulated and observed streamflow.  

Table 4 
Statistical indicators values used for the evaluation of the SWAT models depending on streamflow exceedance probability.  

Rainfall dataset Extremely high streamflow High streamflow Average streamflow Low streamflow 

RMSE (m3/s) PBIAS (%) RMSE (m3/s) PBIAS (%) RMSE (m3/s) PBIAS (%) RMSE (m3/s) PBIAS (%) 

Gauge  24.10  28.47  3.07  8.85  0.83  14.05  0.47  35.24 
R/A  16.55  17.45  3.33  -9.10  1.07  -20.25  0.50  -3.10 
GsMAP_G  41.44  53.75  4.84  17.78  1.36  25.74  0.68  48.05  
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Fig. 9. Fitted parameters and their uncertainty ranges for the three simulation scenarios.  
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The Saturated hydraulic conductivity (SOL_K) indicates the ease of water movement through the soil profile. SLSUBBSN and 
HRU_SLP parameters are related to the topographic conditions in the study area. Together with the lateral flow travel time (LAT_T-
TIME), these three parameters impact lateral flow contribution to streamflow. During the calibration process, LAT_TTIME was low in 
all the simulations (1.78–10.70 days). In the Gauge scenario, the Sol_K and HRU_SLP were increased by 34.21% and 27.48%, 
respectively, allowing more lateral flow to the total streamflow. A similar trend was also observed for the R/A simulation, with a slight 
increase in SOL_K and HRU_SLP. Conversely, the calibration of the GsMAP_G model resulted in an opposite tendency for reducing the 
contribution of lateral flow to the total streamflow. 

GWQMN, GW_DELAY, and REVAPMN parameters control the groundwater contribution to streamflow within the Terauchi 
catchment. ALPHA_BNK, the bank flow recession constant, determines the water contribution from bank storage to the main channel. 
While the three models shared relatively similar ALPHA_BNK, we noted significant variability in values and uncertainty ranges of the 
groundwater parameters. Compared to the Gauge and R/A models, GWQMN in the GsMAP_G scenario was lower (GWQMN =
707.01 mm), while GW_DELAY and REVAPMN were higher (GW_DELAY = 337.79 days; REVAPMN = 941.83 mm). The differences in 
fitted parameters resulted in different groundwater contributions to the catchment water balance. 

ESCO and EPCO determine water allocation between evaporation and percolation. The ESCO parameter that governs soil evap-
oration within the SWAT model presented different fitted values in the three models. It was close to 0.70 in the Gauge model, indi-
cating low soil evaporation. However, it was calibrated to 0.39 and 0.22 for the R/A and GsMAP_G models, resulting in increased 
evaporation and thus high potential evapotranspiration. On the other hand, all the three models shared relatively low EPCO allowing 
plant water uptake from the upper soil profile. 

CH_N2 and CH_K2 correspond to Manning’s “n” coefficient and hydraulic conductivity for the main channel. The calibrated values 
of the CH_N2 in the three models were in the range of 0.050–0.15, indicating that the main channel is mainly covered by heavy timber 
and brush. The CH_K2 in the Gauge and R/A scenarios reflected a moderately high loss rate. However, it suggested a moderate loss rate 
in the case of the GsMAP_G model. 

4.4. Performances of the SWAT model using fixed parameters 

The present analysis was carried out to avoid any possible bias caused by the auto-calibration of different input parameters in the 
SWAT model. We averaged the fitted parameters obtained for the three tested precipitation datasets. Subsequently, we run the SWAT 
model using the calibrated and averaged parameters for the total observation period (Table C1). Table C2 summarizes the performance 
indicators computed for the three simulations. Using fixed parameters, the performance of the Gauge and R/A models slightly 
decreased. Similar to the results obtained using calibrated parameters, the R/A model ranked the best in terms of streamflow simu-
lation (NSE = 0.89), followed by the Gauge scenario (NSE = 0.83). On the other hand, the GsMAP_G scenario was sensitive to the 
change in model parameters, as its performance was lowered by 6% to become “non-satisfactory,” with an NSE < 0.50 and RSR > 0.70. 

5. Discussion 

5.1. Evaluation of the R/A and GsMAP_G precipitation datasets 

The statistical comparison between daily R/A precipitation estimates and gauge measurements revealed a strong correlation 
(r > 90%) and accurate rainfall detection (CSI = 0.74). Literature showed that radar-based precipitation estimates are usually lower 
than gauge-based measurements (Schleiss et al., 2020; Seo et al., 2015). However, the R/A dataset used in the present study showed an 
opposite tendency. As shown in Fig. 2, the R/A datasets overestimated the precipitation by 15–38% in comparison with rain gauge 
measurements, causing higher average rainfall input in the SWAT model year-round (Fig. 6). Similarly, several previous comparisons 
demonstrated an overestimation of about 20% for the R/A product (Ishizaki and Matsuyama, 2018; Urita et al., 2011). This over-
estimation can be originated from the adjustment algorithm used for calibrating radars precipitation estimates by local rain gauge 
measurements. Indeed, the calibration process adopts the maximum value method, which selects the highest value when comparing 
grid point estimates and rain gauge measurements (Makihara, 2000). 

Similar to the R/A dataset, GsMAP_G precipitation estimates were in good agreement with gauge measurements (r > 80%) (Fig. 3). 
However, rainfall detection accuracy was significantly lower (CSI = 0.37), and daily estimates were generally underestimated, causing 
less water input in the SWAT model, especially in July and August (Figs. 5 and 6a). The low rainfall detection generally originated from 
sampling errors in the passive microwave images (Kubota et al., 2009). It is also related to the limitations of infrared and microwave 
sensors in capturing orographic, localized, and convective rainfall events (Hayashi et al., 2021; Nepal et al., 2021). This was reflected 
in the significant rainfall estimation errors (RMSE) by the GsMAP_G over the Terauchi catchment, which was observed during the rainy 
and Typhoon seasons (May–October) when heavy and orographic rainfalls are frequent (Fig. 6b). These estimation uncertainties 
implied the inefficiency of calibrating precipitation estimates based on only the 24 h accumulated rainfall amounts derived from the 
NOAA/CPC rain gauge-based product. They further suggested the need for updating the bias-adjustment algorithm (Mega et al., 2019) 
and the orographic rainfall correction scheme (Yamamoto and Shige, 2015) or the use of more local rain gauges (Deng et al., 2019) to 
improve the quality of the product and extreme rainfall detection. 

5.2. Implication of the selection of precipitation datasets in streamflow simulation 

The three precipitation datasets evaluated in the current study presented different measures, detection accuracy, and spatial 
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representation of the rainfall (R/A: approximately 1 km2; Gauge: around 400 cm2; GsMAP_G: about 120 km2). These differences 
resulted in disparate rainfall inputs (e.g., dry days fractions and daily rainfall volume over the catchment) to the SWAT model and 
different streamflow simulation outputs. From the statistical indicators shown in Table 3, it was clear that the R/A dataset out-
performed the other evaluated datasets in simulating daily streamflow at the Terauchi catchment. The low GsMAP_G model perfor-
mance (NSE = 0.54) was faced with significantly higher performance in the case of the Gauge dataset (NSE = 0.84). This significant 
difference was also observed during the fixed-parameters model test (Table C2). Therefore, it is most likely due to the intrinsic un-
derestimation of rainfall originating from the GsMAP_G product, knowing that the two datasets presented a similar spatial resolution. 
This finding is consistent with the study of Deng et al. (2019), who revealed the outperformance of the gauge-based model on the 
GsMAP_G dataset in a large basin (159 000 km2) in China. 

Extremely high (OEP < 1%) and low (OEP > 60%) flow events are generally difficult to reproduce in the SWAT model (Tan et al., 
2020). These issues were reflected by the different occurrence fractions of daily streamflow less than 2 m3/s in the simulations 
compared to the observations and the underestimation of flow peaks greater than 60 m3/s (Figs. 7 and 8). One of the reasons is using 
only the NSE as an objective function during the auto-calibration process that reduced the mean differences and variances between 
simulated and observed streamflow but neglected the possible deviations in low flow periods (Krause et al., 2005). The R/A product 
partially overcame these issues as it improved the simulation of extremely high and low flow events (Table 4) compared to the Gauge 
and GsMAP_G datasets. This outperformance may not be only at the catchment scale but also at the sub-basin scale. The great per-
formance of the R/A dataset was due to the high spatial resolution of the product (1 km) and the effective algorithm used for observing 
extreme rainfalls. Indeed, the high spatial resolution of the R/A product assists in capturing the detailed spatial features of precipi-
tation, in particular the extreme convective events (Hirokawa et al., 2020; Kato, 2020; Sueki and Kajikawa, 2019; Tsuguti et al., 2019), 
responsible for the extremely high flow events in the study area. This led to overcoming the limitations of ground gauges in terms of 
spatial representation and measurement accuracy during extreme climatic conditions. The benefits of the R/A precipitation dataset in 
the SWAT model may, therefore, exceed the improvement of streamflow simulation to reach the study of hydro-climatic extremes (i.e., 
floods, droughts). Similar findings were also stated for a 2-km radar/rain gauge-adjusted product in Korea Cha and Lee (2021). 

Although the study area presents static characteristics (i.e., land use, soil type, topography) during the simulation period, the 
evaluated precipitation datasets resulted in different model parameterization and discharge flux (Fig. 9). This is not surprising since the 
auto-calibration used in this study considered a wide range of uncertainty to search for the best set of parameters that optimize the 
fitting between observed and simulated streamflow. This variation leads to uncertain interpretations of the hydrological processes in 
the Terauchi catchment. The uncertainty can propagate towards other processes (e.g., sediment dynamics and contaminant transport) 
(Price et al., 2014). It would, therefore, affect the decision-making and may lead to different management and mitigation strategies. 
The situation would be more significant for the GsMAP_G dataset, which was the most sensitive to model parameterization. Therefore, 
the precipitation datasets in hydrological modeling should be selected with caution, considering their uncertainties and limitations. 

6. Conclusions 

Motivated by the potential of gauge-calibrated precipitation datasets in capturing the spatial pattern of rainfall with high accuracy 
and resolution, we investigated the usefulness of two datasets (radar-based: R/A and satellite-based: GsMAP_G) as input in the SWAT 
for daily streamflow simulation. The work focuses on the Terauchi watershed, a medium-size mountainous catchment in southwestern 
Japan. The research outcomes are in the following points:  

• The R/A precipitation data were in good agreement with gauge observations. However, they are overestimated.  
• The GsMAP_G underestimated the rainfall while found to be in correlation with gauge observations.  
• The performance of the SWAT model forced with the three different precipitation datasets was as the following: R/A > Gauge 
> GsMAP_G.  

• The R/A-based model was the most performant in simulating the streamflow with an NSE of > 88%.  
• The R/A-based model improved the simulation of extremely high (OEP < 1%) and low (OEP > 60%) streamflow events.  
• The three precipitation datasets resulted in different simulation outputs and model parameterization. 

Overall, this work reveals the outperformance of the R/A product compared to the GsMAP_G and Gauge datasets in accurately 
representing the spatial variability of rainfall within the Terauchi catchment (51 km2) and improving daily streamflow simulation 
using the SWAT model. However, the study outcomes are case-specific and expected to be true only in catchments with climate and 
scale similar to our study area. In a larger basin, the performance of the Gauge dataset can be improved due to a higher rain gauge 
density (Tan and Yang, 2020), which may lead to different conclusions regarding the “best” precipitation dataset in terms of 
streamflow modeling accuracy. Furthermore, the performances of the R/A and GsMAP_G products in other study sites with different 
topographic conditions and climate regimes (e.g., temperate and subarctic) may change due to the climate and attitude-dependent 
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propagation of precipitation uncertainty (Fallah et al., 2020; Nepal et al., 2021). Future research efforts should aim to validate the 
added value of the R/A product in improving streamflow simulation by focusing on other study areas with different climate and 
topographic conditions. Furthermore, they should assess the potential of other satellite-based datasets like the GPM-IMERG product, 
which outperformed the GsMAP_G in representing the spatial precipitation variability (Hsu et al., 2021). These future topics would 
provide interesting directions for improving the current algorithm used for producing the evaluated gauge-merged datasets and future 
constellation requirements (Kidd et al., 2021). 
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Appendix A. Calculation methods of different statistics 

The methods and equations used for computing the different statistics are described in this appendix. 

r =

∑n

i=1
(xi − x) (yi − y)
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xi is the precipitation measured by rain gauge (mm) or observed streamflow (m3/s) at day i. x is the mean of precipitation measured 
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by rain gauge (mm) or mean observed streamflow (m3/s). yi is the precipitation estimated by gauge-adjusted datasets (mm) or 
simulated streamflow (m3/s) at day i. y is the mean precipitation estimated by gauge-adjusted datasets (mm) or mean simulated 
streamflow (m3/s). N is the number of observations. 

The calculation of the categorical statistic metrics (POD, FAR, and CSI) was preceded by building a 2 × 2 contingency table that 
counts the hits and misses of the R/A and GsMAP_G datasets. A minimum of 1 mm of daily rainfall was used as a rain/no-rain threshold 
(Gao and Liu, 2013). 

See Appendix Table A1. 
Accordingly, 

POD =
a

a + c
(A.7)  

FAR =
b

a + b
(A.8)  

CSI =
a

a + b + c
(A.9)  

Appendix B 

See Fig. B1. 

Fig. B1. Examples of underestimated flow peaks.  

Table A1 
A 2 × 2 contingency table for evaluating the rainfall detection capabilities.   

Rain gauge observes rain Rain-gauge observes no-rain 

R/A or GsMAP_G estimates rain a = hit b = false alarm 
R/A or GsMAP_G estimates no-rain c = miss d = correct negative  
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Appendix C. Model parameters and performance of the fixed-parameters simulations 

See Tables C1 and C2. 

Appendix D. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2022.101134. These data 
include Google maps of the most important areas described in this article. 
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Table C2 
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GsMAP_G  0.48  32.80  0.72  0.54  32.40  0.68  
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