文 (Original article) 論

2011年の福島第一原子力発電所事故で放出された放射性セシウムの 野生ゼンマイ(Osmunda japonica)の葉への移行

清野 嘉之^{1)*}、小松 雅史²⁾、赤間 亮夫³⁾、松浦 俊也⁴⁾、広井 勝⁵⁾、 岩谷 宗彦⁶、二元 隆⁷⁾

要旨

2011年3月の東京電力福島第一原子力発電所事故以降、高レベルの放射性セシウム(134+137Cs)が検出さ れた 10 種以上の日本の野生山菜に出荷制限が課されている(2017 年 7 月 31 日)。しかし、環境から野生 山菜への放射性セシウムの移行やそれに影響を及ぼす要因を調べた研究がほとんどなく、出荷制限が維持 されるべきかどうかの判断に利用できる情報は限られている。福島県郡山市の 131 地点で野生のゼンマイ (Osmunda japonica)の葉を 2015 年 7 月と 8 月に採取し、¹³⁷Cs の野生山菜への移行に影響を及ぼす可能性 のある環境要因を調べた。重回帰分析によると、ゼンマイの葉の¹³⁷Cs 濃度は生育地のリター中の¹³⁷Cs 量、 空間線量率、上層木の被覆率、リターの被覆率と有意な関係があった。後3者をパラメータに用い、ゼン マイの葉の¹³⁷Cs 濃度を予測するモデルを 100 地点の検体を用いて構築し、残りの 31 地点の検体で検証し た。予測の結果は系統誤差が小さく、モデルの正確さ(accuracy)は高かった。しかし、予測値は観測値の 約 1/5 ~ 5 倍の間に分布しており、モデルの精度 (precision) は低かった。測定値と予測値の残差平方和が 大きいため、生育環境に関する上記の3つの情報を利用しても、出荷制限を解除するために必要な検体数 を現行の目安(60)から減らすことはできないと考えられた。植物季節の違いが、今回観察されたゼンマ イの葉における¹³⁷Cs 濃度の変動に関与している可能性がある。今後の研究では、このような大きな変動 を引き起こすメカニズムを明らかにする必要がある。

キーワード:空間線量率、山菜、シダ、放射性セシウム濃度の予測モデル、放射性セシウムの沈着、出荷 制限、食品の基準値

1. はじめに

東京電力福島第一原発事故は、山菜にも深刻な放射性 セシウム汚染をもたらした。市場に流通させる山菜を対 象とする対策のひとつに、市町村単位で設けられる出荷 制限がある。放射性セシウム濃度が基準値を超え、出荷 を制限されている野生山菜が2017年7月31日現在、10 数種ある(林野庁 2017)。食品中の放射性物質に関する原 子力災害対策本部(2015)のガイドラインによると、都道 府県は、国が行う出荷制限・摂取制限の品目・区域の解 除を申請でき、管理が可能であれば県内を複数の区域に 分割できる。解除の条件は1市町村当たり3か所以上で、 直近1か月以内の検査結果が全て基準値以下であること が原則である。また、検査結果が安定して基準値を下回 ることが確認できるよう検査すること、他の地点より高 い放射性セシウム濃度の検出が見込まれる地点でも検体 を採取し、繰り返し分析を行っても基準値を超える分析 値が出ないことが統計的に推定できることといった条件 が付く。さらに、野生山菜は管理の困難性等があるため、 検体数を増やすこととされている。

2015年に初めて2種の野生山菜で出荷制限の解除 例が出た。宮城県加美町の野生品を含むクサソテツ (Matteuccia struthiopteris) (厚生労働省 2015a)、岩手県一 関市の野生セリ (Oenanthe javanica) (厚生労働省 2015b) である。いずれも「原子力災害対策本部のガイドライン」 に沿って、3~4年の継続調査を複数か所で行って放射性 セシウム濃度が下がる傾向(Appendix 1参照)にあること を示し、対象地域全体で濃度が高そうなところを含めて 60 あまりの地点で検体を取って全て基準値以下であるこ とを示したうえで解除を申請している。その後、野生ク サソテツ、もしくは野生品を含むクサソテツが、2017年 に3市町で出荷制限を解除されている(厚生労働省 2017a, $b, c)_{\circ}$

原稿受付:平成29年8月1日 原稿受理:平成30年3月30日

¹⁾ 森林総合研究所 植物生態研究領域

²⁾ 森林総合研究所 きのこ・森林微生物研究領域

³⁾ 森林総合研究所 震災復興·放射性物質研究拠点 4) 森林総合研究所 森林管理研究領域

⁵⁾ 郡山女子大学

⁶⁾日本特用林産振興会

⁷⁾ 元日本特用林産振興会

森林総合研究所植物生態研究領域 〒 305-8687 茨城県つくば市松の里1

しかし、出荷制限解除のための検体採取の負担は軽い ものではない。種の特性にもとづいて、合理的な検体採 取計画を立てることが重要であり、例えば、生育地で比 較的容易に測れる項目で山菜の放射性セシウム濃度やそ の時間的変化の傾向と関係があるものが見いだされれ ば、それを利用して精度を保ったまま検体数を減らすな ど、解除要請の方法を改善できる可能性がある。これま での調査から、空間線量率 (air dose rate, ADR, µSv h⁻¹) や 放射性セシウムの沈着量(Bq m⁻²)が野生山菜の放射性セ シウム濃度と有意な関係を持つことや、放射性セシウム の環境から山菜への移行は山菜の種類によって異なる場 合や類似する場合があることが示唆されている (Kiyono and Akama 2015, 清野・赤間 2017)。放射性セシウム濃度 の経年変化の傾向も一部の種で報告されており、種によっ て異なる場合がある(田上・内田 2015,清野・赤間 2017, 2018)。しかし、現状では、採取地における放射性セシウ ムの移行レベルのバラツキや経年変化の傾向、それらに 影響する条件についての調査例は少なく、出荷制限解除 の準備に利用できる情報は限られている。主要な山菜に ついて順次情報を収集することにより、検体採取の負担 を軽減化する手法の提案のための基礎的データが得られ ると考えられる。

そこで、本研究では、福島県で生産量が多いワラビ (Pteridium aquilinum)、ゼンマイ (Osmunda japonica)、フ キ (Petasites japonicus)の3種(農林水産省2016)のうち、 野生個体の生育地が刈払いなど人為攪乱を比較的受けに くいと考えられるゼンマイを選び、放射性セシウムの汚 染レベルが多様になるよう、ある程度広い地域を対象に 多数の検体を採取し、放射性セシウムの沈着量や地形な ど環境から山菜への放射性セシウムの移行と関係する条 件を考慮しつつ、ゼンマイ葉の放射性セシウム濃度とそ のバラツキ、それらに影響を及ぼす条件を明らかにする こととした。

ゼンマイは落葉性の多年生シダ植物で、日本全国に広 く分布する(倉田・中池 1990)。春の新芽を食用にし、生 産量のうち全国では8割、福島県でも6割が野生品(農 林水産省 2016) である。本研究の調査計画時点(2015 年 3月20日)でゼンマイの出荷制限が出されている市町村 は岩手県住田町、奥州市、一関市、宮城県気仙沼市、大 崎市、丸森町、福島県相馬市、川俣町、南相馬市、二本 松市、大玉村、葛尾村、郡山市、川内村、須賀川市、楢 葉町、広野町、いわき市、栃木県那須町、日光市、鹿沼 市であった(厚生労働省 2015a)。このうち福島県郡山市 は、ゼンマイがよく見られ(倉田・中池 1990)、土地面積 が広く、多様な立地環境条件や、放射性セシウムの汚染 の程度がさまざまに異なる(文部科学省 2013)場所が得 られる。多様な立地環境条件や汚染の程度に応じた放射 性セシウムの移行の状況を把握するのに適していること から、郡山市を本研究の調査地に選んだ。

なお、郡山市では4~5月がゼンマイの新芽の採取適

期であるが、葉の放射性セシウム濃度は一般に季節変化 し(例えば、Bunzl and Kracke 1989)、特に春の展葉期は 濃度の変化が速い可能性がある。本調査では多数の地点 で検体を採取することから、採取期間が比較的長期にわ たる可能性があるため、採取時期による濃度の違いが大 きくならないよう、夏の成葉を検体にした。一方で、放 射性セシウム濃度の季節変化を調べ、春から夏にかけて の葉の濃度の変化の傾向にもとづいて、採取適期である 春の新芽濃度を夏の成葉濃度から推定できるようにした。 あわせて、植物季節の観点から放射性セシウムの移行濃 度のバラツキについて考察した。

本研究の成果の一部は第5回環境放射能除染研究発表 会で口頭発表した(清野ら 2016)。

2. 材料と方法

2.1 検体の採取と分析

2015年7月に郡山市(Fig.1)の地区1~5を観察し、 ゼンマイの群生地をそれぞれ5~30(計100)か所選んで、 ゼンマイの成葉(栄養葉, sterile leaf, Fig. 2)を1か所につ き1検体(生重15~70g)採取した。各地区は農地や市 街地によって互いに隔てられている土地で、森林公園や 林業に関する試験・調査施設などに使われていて樹木が 多い。ゼンマイは群生することが多く、1つの群生地は1 ~数100個体からなる。選んだ群生地ごとに1~数個体 から採取した葉を混合して1検体とした(以下、この成 葉の100検体を郡山100と呼ぶ。検体を採取した群生地 の場所を地点と呼ぶ)。採取地は暖温帯上部から冷温帯下 部に位置する。土壌母材は堆積岩類、花崗岩類、流紋岩 類、火砕流堆積物などである(産業技術総合研究所地質 調査総合センター 2015)。採取地では、採取個体位置の 緯度・経度(GPS 使用)、地形(斜面上部、中部、下部に 区分)、斜面傾斜角(クリノメータ使用)、上木の被覆(疎 開地、林縁、林内を目視判定)、空間線量率(地上高1m の μSv h⁻¹。CdTe 半導体検出器(株式会社テクノエーピー TA100U) あるいは固体シンチレータ (CsI (Tl)) 検出器 (株式会社堀場製作所 PA-1000 Radi)を使用)、採取したゼ ンマイの葉長(m)を記録した。また、採取したゼンマイ の個体全体と根元に堆積したリターの状況が分かる写真 を撮り、画像を目視してゼンマイ個体の根元周りでリター に被われて鉱質土壌やコケが見えていない土地面積割合 (%)を計測し、リターの被覆率とした。

採取地5つにつき1つの割合で、ゼンマイの個体のわ きでリター検体を一辺0.25mの正方形枠で1点ずつ採取 した。この際に植物の根とコケは生きているものもリター に含めた。また、リターを採取した正方形枠内で、土壌 の検体を100 cc 採土円筒(地表面積0.002m²、深さ0.05m) で1点ずつ採取した。リターと土壌採取地では再測に備 え、杭を打って土地を標識した。

ゼンマイとリター、土壌の各検体の放射性セシウム濃 度の計測は、日鉄住金環境株式会社分析ソリューション

1.5 – 2.0
1.0 – 1.5
0.5 - 1.0
0.3 – 0.5
0.2 - 0.3
0.1 – 0.2
0-0.1

Fig. 1. ゼンマイの検体採取地区の位置

1. 郡山市東部森林公園、2. 福島県林業研究センター、3. 大槻公園、4. 郡山市高篠山森林公園、5. 逢瀬公園、6~ 13 は検証データの採取地区で国有林と民地がある。背景は空間線量率(air dose rate, ADR, μSv h⁻¹)の分布で文部 科学省 (2013) にもとづいて作成した。

事業本部で行った。ゼンマイは水道水で軽く洗って土な どの汚れを落としたのち、生のまま U-8 容器に詰めた。 リターは細かく裁断し、土壌は石や根を除いて細かく砕 き、全量重の測定後、中身がまんべんなく混ざるように して必要量を U-8 容器に入れた。いずれの検体も別に一 部を取って含水率を測定した。ゲルマニウム半導体検出 器 (キャンベラ社 GC-2520) を用いたガンマ線スペクトロ メトリにより検体のセシウム 134 (¹³⁴Cs)、セシウム 137 (¹³⁷Cs)、カリウム 40(⁴⁰K)の量を計測し、計測誤差、検 出下限値とともに Bq dry-kg⁻¹の値を含水率 0% のときの 値に換算した。計測の条件は以下とした。①¹³⁷Csの計 測値は相対誤差 10% 以下、②¹³⁴Cs の計測値は相対誤差 10% 超で良いが、検出限界(計測値の標準偏差 SD の 3 倍、3σ) 以上とした。③①②の条件を満たさなくても計測 時間は 12 時間を上限として打ち切り、④ 40K は ¹³⁷Cs や ¹³⁴Csの計測を打ち切ったときの値を記載することとした。

2.2 検証調査におけるゼンマイの検体の採取と分析

立地環境条件や汚染の程度に応じた放射性セシウムの 移行の状況に関して、郡山 100 で得られた結果を検証す るため、8 月に Fig. 1 中の地区 6 ~ 13 の、それぞれ 2 ~ 9 地点(計 31 地点)でゼンマイの成葉を1 地点につき1 検体(生重 50 ~ 300 g)採取し、生育地の環境条件を、採 取個体位置の緯度・経度や地形など郡山 100 と同じ項目

Bulletin of FFPRI, Vol.17, No.3, 2018

について計測、記録した(以下、この成葉の31検体を郡山31と呼ぶ)。採取地は暖温帯上部から冷温帯に位置する。土壌母材は火山岩類、堆積岩類、花崗岩類などである(産業技術総合研究所地質調査総合センター2015)。空間線量率はシンチレーションサーベイメータ(日立アロカメディカル株式会社 TCS-172B)で計測した。ゼンマイの検体は森林総合研究所において、熱風乾燥器で75℃、48時間以上の条件で乾燥(乾燥後の含水率約4%)させてから、U-8容器または0.7Lマリネリ容器に入れ、同軸型ゲルマニウム半導体検出器(セイコー・イージーアンドジー株式会社 GEM40P4-76)でガンマ線スペクトロメトリの計測値を求めた。計測の条件は2.1の①~④と同じである。さらに含水率0%のときの濃度に換算した。

フキでは葉身の方が葉柄よりも¹³⁷Cs 濃度が高い傾向が あり(清野・赤間 2015)、ワラビの新芽も穂先が葉柄より 高いことが報告されている(長谷川・竹原 2016)。ゼンマ イは大きい葉では葉柄(stipe, Fig. 2)がとくに長くなり、 葉全体に占める葉身の割合が小さくなることから、生育 地の環境条件の影響とは別に、採取する葉の大きさによっ ても葉¹³⁷Cs 濃度が変わる可能性がある。そこで10地点 の検体は小羽片(pinnule)と[羽片中肋(midrib)+中軸 (rachis)+葉柄](Fig. 2)に分け、それぞれの¹³⁷Cs 濃度を 測定した。

Fig. 2. ゼンマイ個体の形態と部位名 葉と枯死茎、根は模式的に描いた。

2.3 ゼンマイの成長と放射性セシウム濃度の季節変化

茨城県石岡市椚平国有林で 2015 年 4 月 18 日に林道の 山側法面に生育するゼンマイ 58 個体を標識し、各個体 の生育地の環境条件を計測、記録した(椚平プロット)。 58 個体は林道沿いの距離で約 400 m 離れた 2 群(A、B 群)に分かれ、A 群は 27 個体、B 群は 31 個体からなる。 A、B 群はいずれも斜面中~下部の林縁に分布し、斜面 傾斜角の平均値と SD はそれぞれ 54 ± 18 度 (*n* = 27)、60 ± 18 度 (*n* = 31)であった。生育地は暖温帯上部に位置 し、土壌母材は領家変成岩(産業技術総合研究所地質調 査総合センター 2015)である。地上 1 m の平均空間線量 率(シンチレーションサーベイメータ(日立アロカメディ カル株式会社 TCS-172B))は 2015 年 4 月 18 日に A 群が 0.135 μSv h⁻¹、B 群が 0.16 μSv h⁻¹、2016 年 6 月 17 日に A 群が 0.125 μSv h⁻¹、B 群が 0.135 μSv h⁻¹であった。

2015年4月18日は標識した全個体について、以降は5 ~9月の毎中旬にA、B各群の3~6個体について栄養 葉の長さを計測し、各計測個体から平均サイズの葉を1 枚ずつ採取し、各月、群ごとに混合したものを検体とした。 7月には標識した各個体について平均サイズの栄養葉の 長さを計測した。2016年は2、4、5、6月に各群から1 ~3個体を掘り取って根系の空間的な広がりを観察する とともに、葉(leaf, Fig. 2; 栄養葉(sterile leaf)と胞子葉)、 地上茎(aboveground stem, Fig. 2)、地下茎(belowground stem, Fig. 2)、根(roots, Fig. 2)、枯死茎(dead stem, Fig. 2) に分け、個体(葉+茎+根)当たりのバイオマスや放射性 セシウム、⁴⁰Kの濃度、量の季節変化を求めた。また、11 月に各群から1個体を掘り取ってバイオマスを求めた。 ゼンマイの検体の放射性セシウム、⁴⁰K 濃度の測定方法は 郡山31と同じであるが、採取月によって採取個体のサイ ズがやや異なった。ゼンマイは栄養葉の枚数(N)と絶乾 個体重(Wt,g)との間に、ほぼ正比例の関係(Wt = 17.7 N - 8.0, R² = 0.6293, P = 0.019, n = 8)が成り立つことから、 個体レベルでバイオマスや放射性セシウム、⁴⁰K の量を採 取月間で比較するときは、栄養葉一枚当たりの量に変換 した。その際、2月採取個体は当年の栄養葉が未展開で あるため、枯れたまま脱落しないでいる前年の栄養葉の 数で代用した。

また、ゼンマイの同一個体から春と夏に栄養葉を採取 して放射性セシウム濃度を計測した事例を、公表データ (清野・赤間 2013, Kiyono and Akama 2013) や著者の未発 表データから集めた。

2.4 ゼンマイの新芽の部位別の放射性セシウム濃度と葉 柄の含水率

ゼンマイは主に栄養葉の新芽の葉柄を食用とし、綿毛 (hairs, Fig. 2)や未展開の小羽片、大半の羽片中肋や中軸 は除去される。しかし、過去に収集された栄養葉の新芽 の検体の一部は食用部分以外も含んでいることから、食 用部分の濃度に換算できるよう、茨城県石岡市の1群生 地の栄養葉の新芽 148 本 (混合して 1 検体とした) につい て、調理の下ごしらえを念頭に置いて葉柄、綿毛、[小羽 片+羽片中肋+中軸] に区分して検体を採り、それぞれ の乾燥重と放射性セシウム濃度を計測した。また、葉柄 の含水率を公表資料(清野・赤間 2013)や椚平プロット の検体で調べ、集計した。

2.5 生育地の環境条件とゼンマイの¹³⁷Cs 濃度との関係

郡山100のデータについて、ゼンマイの葉の¹³⁷Cs 濃度 を基準変数とする重回帰分析を行った。生育地の環境条 件のうち、①空間線量率、②斜面上の位置(ダミー変数 として上部に1、中部や平坦地に2、下部に3を与えた)、 ③斜面傾斜角(°)、④上木の多寡(ダミー変数として疎 開地に1、林縁に2、林内に3を与えた)、⑤リターの土 地被覆面積割合(%)の5つを選び、相互の相関を求めた ところ、空間線量率と斜面傾斜角との間に負の相関(r= -0.4291)があり、他は-0.2570~0.2274の弱い相関があっ た。このため、斜面傾斜角を除いた4条件について、ダミー 変数以外は値を対数変換して予測変数とし、変数減増法 で重回帰式を求めた。得られた結果にもとづき、ゼンマ イの¹³⁷Cs 濃度を予測するモデルを作成し、郡山31のデー タで検証した。

本研究では、文献値以外の放射性セシウム濃度を2015 年9月1日を基準日に減衰補正した。統計解析には R3.3.1 (R Development Core Team 2011)を使用した。デー タの分布の正規性の判定に正規性検定ツール (CivilWorks (シビルワークス), http://www.civilworks.jp/)を使用した。 空間線量率や¹³⁴Cs、¹³⁷Cs、⁴⁰K 濃度を異なる機器で測定し ている場合があるが、測定機器はいずれも定期的な校正 を受けており、測定値は信頼できる。

3. 結果

3.1 ゼンマイの生育地

郡山100の生育地100地点の地形は、斜面上部が7地点、 斜面中部ないし平坦地が69地点、斜面下部が24地点で、 斜面中・下部が93%を占めた。斜面傾斜角は1~46度 とさまざまであった。疎開地は2地点と少なく、林緑が 12地点、林内が86地点であった。リターの被覆率は概 して高く、96地点で100%であった。被覆率が60~70% とやや低い4例は林縁や疎開地の生育地であった。敷地 管理のため林床の草木が定期的に刈り払われている森林 公園では、大きく育ったゼンマイの、面積数10 m²にお よぶ群生地も見られた。20地点で調べたリターの現存量 は0.32~8.1 Mg ha⁻¹ (平均値と SD は 2.22±1.64 Mg ha⁻¹) であった。

郡山 31 の生育地は郡山 100 と同様で、斜面上部が 1 地 点、斜面中部が 16 地点、斜面下部が 14 地点で、斜面中・ 下部が 97% を占めた。斜面傾斜角は 0 ~ 62 度とさまざ まであった。疎開地はなく、林縁が 14 地点、林内が 17 地点であった。リターの被覆率は27地点で100%であった。被覆率が50~83%とやや低い4例は、斜面上部や林縁の生育地であった。人による植生管理に関しては、植物がよく刈り払われる道わき、法面などが17地点、数年以上刈り払いされていない林内が14地点であった。

空間線量率 (地上高 1 m) は郡山 100 が 0.14 ~ 0.46 μ Sv h⁻¹ で、その平均値と SD は 0.30 ± 0.089 μ Sv h⁻¹ (*n* = 100)、 郡山 31 が 0.08 ~ 0.41 μ Sv h⁻¹ と 0.23 ± 0.084 μ Sv h⁻¹ (*n* = 31) であった。

 3.2 ゼンマイの葉の含水率、¹³⁴Cs、¹³⁷Cs、⁴⁰K 濃度、生育 地のリター、土壌の¹³⁴Cs、¹³⁷Cs、⁴⁰K 濃度と沈着量

郡山 100 の含水率の平均値と SD は 77 ± 3% (n = 100) であった。¹³⁴Cs 濃度は 9 ~ 320 Bq dry-kg⁻¹ (100 検体中 9 検体は検出下限値未満であったため、検出下限値 21 ~ 72 Bq dry-kg⁻¹ で代用: Appendix 2 参照)、¹³⁷Cs 濃度は 21 \sim 1200 Bq dry-kg⁻¹、 40 K 濃度は 420 \sim 1500 Bq dry-kg⁻¹ (100 検体中 8 検体は検出下限値 430 ~ 1300 Bq dry-kg⁻¹ で代用:Appendix 2参照)であった。また、リターの ¹³⁴Cs 濃度は 260 ~ 5100 Bq dry-kg⁻¹、¹³⁷Cs 濃度は 950 ~ 20000 Bq dry-kg⁻¹であった。⁴⁰K 濃度は 20 検体中 18 検 体が検出下限値(480~1200 Bq dry-kg⁻¹)未満であった。 リターの沈着量は¹³⁴Cs が 0.47 ~ 22.3 kBq m⁻²、¹³⁷Cs が $1.8 \sim 92.5 \text{ kBg m}^{-2}$ 、 40 K が $9.1 \sim 390 \text{ kBg m}^{-2}$ (20 検体 中18検体は検出下限値で代用: Appendix 2参照)であっ た。土壌の¹³⁴Cs 濃度は 150 ~ 1600 Bq dry-kg⁻¹、¹³⁷Cs 濃 度は 550 \sim 6700 Bq dry-kg⁻¹、 40 K 濃度は 260 \sim 900 Bq dry-kg⁻¹(20検体中10検体は検出下限値260~430 Bq dry-kg⁻¹ で代用: Appendix 2 参照) であった。土壌の沈着 量は 134 Cs が 2.9 ~ 46.4 kBq m⁻²、 137 Cs が 11.6 ~ 200 kBq m⁻²、⁴⁰K が 7.6 ~ 3500 kBg m⁻² であった。福島第一原 発事故で放出された¹³⁴Csと¹³⁷Csは事故時の Bq 値はほ ぼ同量で、その後は半減期の違いにより¹³⁴Cs が早く失 われている。2015 年 6 月の調査時点の Bq dry-kg⁻¹ 値の ¹³⁴Cs /¹³⁷Cs比の平均値とSDはゼンマイ葉で0.28±0.08(n = 100)、リターで 0.25 ± 0.02 (n = 20)、土壌で 0.25 ± 0.02 (*n* = 20) であった。

¹³⁴Cs 濃度が検出下限値を下回った検体を除外し、¹³⁷Cs 濃度と ¹³⁴Cs/¹³⁷Cs 濃度比との関係をゼンマイとリター、土 壌についてそれぞれ求めたところ、ゼンマイ (P=0.362, n= 91) とリター (P=0.981, n=20) では関係は有意でなく、 土壌では ¹³⁷Cs 濃度が薄い場合に ¹³⁴Cs/¹³⁷Cs 濃度比がやや 大きくなる傾向 (P=0.0251, n=20) があった。¹³⁷Cs 濃度 が低い検体では、福島事故前に大気圏内での核実験で放 出された ¹³⁷Cs の影響で、¹³⁴Cs/¹³⁷Cs 濃度比が小さくなる と思われるが、今回のデータではそのような傾向はなかっ た。したがって、今回計測された ¹³⁷Cs は福島事故由来の ものが殆どで、核実験の影響は無視できる程度と考えら れた。

また、¹³⁴Cs 濃度が検出下限値を下回った検体は除外し

て¹³⁴Cs/¹³⁷Cs 濃度比を求めたところ、郡山 100 ゼンマイ葉 が 0.27±0.04 (*n*=91)、郡山 31 検証用ゼンマイ葉が 0.25± 0.06 (*n*=31)、春 – 夏葉濃度比算出用ゼンマイ個体 (*n*=8) の春葉と夏葉がそれぞれ 0.27±0.08 と 0.26±0.09、郡山 100 リターが 0.26±0.01 (*n*=20)、郡山 100土壌が 0.25±0.02 (*n*=20) であった。分散分析の結果、群間に平均値の有意 差はなかった (*P*=0.1604)。このため、以下では放射性セ シウムに関しては¹³⁷Cs 濃度の解析結果について述べるこ ととする。

3.3 ゼンマイとその生育地のリター、土壌の¹³⁷Cs、⁴⁰K 濃 度の範囲と頻度分布の形

郡山 100 の¹³⁷Cs 濃度の分布は対数正規分布にしたがった(D'Agostino's K-squared test, $K^2 = 1.5054$, P = 0.4711; Anderson–Darling test, $A^2 = 0.2717$)。SD は 0.9291、対数平 均値の真数は 165 (同平均値 + SD, 417; 平均値 – SD, 65) Bq dry-kg⁻¹ であった。⁴⁰K 濃度は 8 検体で検出下限値 (430 ~ 1,300 Bq dry-kg⁻¹) を下回った。検出下限未満の 8 検 体の⁴⁰K 濃度を検出下限値で代用したときの郡山 100 の ⁴⁰K 濃度は 420 ~ 1,500 Bq dry-kg⁻¹ であった。濃度分布は 対数正規分布にしたがった ($K^2 = 0.1528$, P = 0.9265; $A^2 =$ 0.5464)。SD は 0.2720、対数平均値の真数は 795 (平均値 + SD, 1,044; 平均値 – SD, 606) kBq dry-kg⁻¹ であった。⁴⁰K 濃度は ¹³⁷Cs 濃度との間に有意な関係が認められなかった (P = 0.227)。⁴⁰K 濃度は ¹³⁷Cs 濃度と比べて値の変動幅が ごく小さかった。

リター、土壌それぞれ 20 検体の ¹³⁷Cs の沈着量も対数 正規分布にしたがった (リターの ¹³⁷Cs, $K^2 = 0.5073$, P = 0.7759; $A^2 = 0.1963$ 、土壌の ¹³⁷Cs, $K^2 = 1.2604$, P = 0.5325; $A^2 = 0.3266$)。対数平均値の真数は、リター ¹³⁷Cs が 11 (平 均値 + SD, 29; 平均値 – SD, 3.8) kBq m⁻², 土壌 ¹³⁷Cs が 44 (平均値 + SD, 102; 平均値 – SD, 19) kBq m⁻² であった。深 さ 0.05 m までの表層土壌にリターの約 4 倍の放射性セシ ウムが存在していた。

3.4 ゼンマイの葉の大きさが葉¹³⁷Cs 濃度に及ぼす影響

大きな葉では小羽片の葉全体に占める重量比が小さく なる傾向があり (Fig. 3a)、小羽片/ [羽片中肋+中軸+葉 柄] の¹³⁷Cs 濃度比は高くなる傾向があった (Fig. 3b)。二 つの傾向が打ち消しあった結果として、小羽片/ [羽片中 肋+中軸+葉柄] の¹³⁷Cs 量比 (Fig. 3c) や葉全体の¹³⁷Cs 濃度 (Fig. 3d) が葉の大きさによって変化する傾向は認め られなかった。

3.5 ゼンマイのバイオマスとその¹³⁷Cs、⁴⁰K 濃度、量の時 間的変化

椚平プロットのゼンマイは、2015年4月に胞子葉に少し遅れて栄養葉を伸ばし始めた(Fig. 4a)。栄養葉は5月ま

Fig. 3. ゼンマイの葉の大きさと小羽片、[羽片中肋+中軸+葉柄] の重量、¹³⁷Cs 濃度の関係 福島県と茨城県の 10 検体。a: 小羽片/[羽片中肋+中軸+葉柄] 重量比、b: 小羽片/[羽片中肋+中軸+葉柄] ¹³⁷Cs 濃度比、c: 小羽片/[羽片中肋+中軸+葉柄] ¹³⁷Cs 量比、d: 葉 ¹³⁷Cs 濃度

でにほぼ伸び切り、以後夏までの成長はわずかであった。 個体によって開葉開始の遅速はあったが、同じ個体の葉 は一斉に開葉し、開葉後の葉数はほぼ一定であった。7月 の個体ごとの平均サイズの栄養葉の長さの平均値とSDは A 群 1.1 ± 0.3 m (n = 25)、B 群 1.3 ± 0.2 m (n = 31)で、B 群の方が平均個体サイズは大きかった (P = 0.007,対応の ない異分散の2組の平均値の差のt検定)。一部(2%)の 個体は8~9月に新しい葉を1~2枚展ばした。これは、 樹木等の土用芽に相当するものと考えられた。8~9月に 展開した栄養葉は概して小さく、春の栄養葉が生存して いれば、それより大きくなることはなかった。9月 20日 には小羽片の約1/3~1/2が黄葉ないし枯死していた。11 月も一部の小羽片は生存していた。

ゼンマイの根はひげ根で、短い地下茎から周囲に広がっ ていた(Fig. 2, 写真)。根は概して浅く、その広がりは水 平方向には個体の葉群半径に近い 0.3 ~ 0.5 m、垂直方向 には地表面から深さ 0.1 ないし 0.17 m までの範囲であっ た。検体にした個体の解体時の観察によると、春の開葉 後の個体でも茎頂に多数の未展開の幼葉(葉原基)を保持 していた(Fig. 2, 写真)。この未展開の幼葉は植食動物に 葉を損なわれたときなどに発芽させるスペアと考えられ、 その数は個体サイズの小さい A 群では少なかった。サイ ズの小さい個体は多くの資源を温存に割くことができな いようである。春の開葉後の 5、6 月の同化/非同化部重 比は A 群が 0.31 と 0.26、B 群が 0.67 と 0.39、両群込みの 比の平均値と SD は 0.41 ± 0.18 (*n* = 4) であった。

葉の¹³⁷Cs、⁴⁰K 濃度は 5 月にピークを持ち、6 月以降は より低い濃度でおおむね安定していた (Fig. 4b,c)。

2月から6月にかけて葉一枚当たりの個体(葉+茎+根) バイオマスは増加傾向にあった (Fig. 5a)。¹³⁷Cs の個体当 たりの量も上昇し (Fig. 5b, c)、値の上昇は A 群で著しかっ た。⁴⁰K の個体当たりの濃度も上昇傾向にあったが¹³⁷Cs と異なり、A、B 群間の違いは小さかった (Fig. 5d)。¹³⁷Cs の個体当たりの量の増加の開始は B 群が早く、4 月にピー クを持った (Fig. 5e)。A 群は開始が遅れ、6 月まで増加 を続けた。個体¹³⁷Cs/⁴⁰K 濃度比は 5 月の A 群が顕著に高 かった(Fig. 5f)。葉一枚当たりの個体バイオマスは6月 と11月の間で有意差がなかった(P=0.49099, n=2;対応 のある2組の平均値の差のt検定)。成長と枯死によりバ イオマスが全て入れ替わるのに要する時間は、代謝回転 率(八杉ら1996)の逆数である平均値/変化量で表せる。 それを 2016 年 2 ~ 11 月に観測したバイオマスの((最大 値+最小値)/2)/(最大値-最小値)で近似したところ、 A 群は 1.4 年、B 群は 5.7 年で、A 群の個体は B 群の個 体より短い時間でバイオマスを置き換えていると考えら れた。

Fig. 4. ゼンマイの葉の長さと¹³⁷Cs、⁴⁰K 濃度の季節変化 a: ゼンマイの葉長。A、B 群それぞれ3~5以上 の個体の各平均サイズの栄養葉の長さの平均値。 バーは標準偏差。毎月同じ個体とは限らない。b: 葉の¹³⁷Cs 濃度。c: 葉の⁴⁰K 濃度。A、B 群それぞ れ3~5 個体以上の栄養葉の混合。毎月同じ個体 とは限らない。4 月の検体は綿毛を除去した。

Fig. 5. ゼンマイの個体のバイオマスと¹³⁷**Cs**、**4**⁰**K** の濃度、量の季節変化 a: バイオマス、b: ¹³⁷**Cs** 濃度、c: ¹³⁷**Cs** 量、d: ⁴⁰**K** 濃度、c: ⁴⁰**K** 量。個体バイオマスは地上部(綿毛を含む葉、地上茎) と地下部(地下茎、根)の合計。個体のバイオマスと ¹³⁷**Cs** 量、⁴⁰**K** 量は葉一枚当たりの値で表した。

3.6 新芽の食用部分の濃度と夏の成葉濃度の関係

¹³⁷Cs の春の新芽濃度と夏の成葉濃度を比較できる事例 が福島県川内村で3つ、郡山市、只見町、茨城県石岡市 から1つずつ得られた。これに椚平プロットA、B群の4 月と7月の値を加えた8事例について求めた新芽/成葉 ¹³⁷Cs 濃度比の平均値とSDは2.4±1.5 (*n* = 8)であった。 ¹³⁷Cs について、新芽全体の濃度を1としたときの綿毛、[小 羽片+羽片中肋+中軸]、葉柄の各部分の濃度はそれぞれ 0.32、1.39、0.77であった。新芽/成葉¹³⁷Cs 濃度比(2.4)、 新芽全体に対する葉柄濃度比(0.77)から、春の新芽の食 用部分の濃度は夏の成葉濃度の1.8倍と見積もられた。

新芽の葉柄の含水率は川内村で2つ(清野・赤間 2013)、椚平プロットA、B群で2つの事例が得られた。 含水率の平均値とSDは90±3%(n=4)であった。

郡山 100 について、含水率を成葉 77%、新芽 90% とし、 春の新芽の食用部分の絶乾重当たり濃度を夏の成葉濃度 の 1.8 倍と仮定して春の新芽のときの¹³⁴Cs + ¹³⁷Cs 濃度を 推定したところ、100 Bq fresh-kg⁻¹を超える検体数は 100 中 81 であった。 3.7 生育地の環境条件とゼンマイの葉の¹³⁷Cs 濃度との関係 ゼンマイの葉の¹³⁷Cs 濃度はリターの¹³⁷Cs 沈着量と有 意 (*P* = 0.0224, *n* = 20, Fig. 6a)な正の相関関係があり、土 壌の¹³⁷Cs 沈着量とは有意な関係が認められなかった (*P* = 0.8621, *n* = 20, Fig. 6b)。空間線量率はリターの¹³⁷Cs 沈 着量との関係が有意でなく (*P* = 0.097, *n* = 20, Fig. 6c)、土 壌の¹³⁷Cs 沈着量との間に有意 (*P* = 0.0413, *n* = 20, Fig. 6d) な正の相関関係があった。空間線量率とリターと土壌の ¹³⁷Cs 沈着量の合計値との間にはより強い (*P* = 0.013, *n* = 20) 正の相関関係があった。

重回帰分析の結果、ゼンマイの葉の¹³⁷Cs 濃度との 関係に意味があると判断されたのは、空間線量率(P= 0.0431, n = 100)と上木の多寡(P = 0.1177, n = 100)、リ ターの多寡(P = 0.0948, n = 100)の3つであった。生育 地の空間線量率が高い場合(Fig. 7a)や、生育地が疎開 地よりも林縁、さらに林内である(Fig. 7b)、個体周りの リターが多い(Fig. 7c)と¹³⁷Cs 濃度が高くなると考えら れた。

Fig. 6. リター、土壌への¹³⁷Cs 沈着量と空間線量率、ゼンマイの葉¹³⁷Cs 濃度との関係 郡山市内 20 地点で調査。空間線量率は地上高 1 m の値。a: ゼンマイの葉¹³⁷Cs 濃度とリターへの¹³⁷Cs 沈着量、b: ゼンマイの葉¹³⁷Cs 濃度と土壌への¹³⁷Cs 沈着量、c: 空間線量率とリターへの¹³⁷Cs 沈着量、d: 空間線量率と土壌へ の¹³⁷Cs 沈着量。

Fig. 7. 空間線量率、上木の多寡、リターの多寡とゼンマ イの葉の ¹³⁷Cs 濃度の関係 a: 空間線量率(地上高 1 m, μSv h⁻¹)、b: 上木の多寡 (1 疎開地、2 林縁、3 林内)、c: ゼンマイ個体の根 元周りでリターが被覆する土地面積割合(%)。

3.8 生育地の環境条件からゼンマイの葉の¹³⁷Cs 濃度を予 測するモデルの作成

ゼンマイの葉の¹³⁷Cs 濃度との関係が見いだされた空間線量率、上木の多寡、リターの多寡の3つの一部あるいは全てを予測変数とする式(Eqs.1~7)を作成した。 Eqs.1~7はいずれも有意であった(*P*=0.007~0.040)。 これらをゼンマイの葉の¹³⁷Cs 濃度を予測するモデル1~ 7とした。*AIC*(Akaike 1973)の値から、3要因のモデル1 が最も当てはまりが良く、ついで空間線量率を含む2要 因のモデル2、3が良いと考えられた。

Ln $(CON^{137}Cs_{OJL}) = 0.5905$ Ln (ADR) + 0.3258 OT + 1.9559Ln (LT) - 4.0519 $(R^2 = 0.1167, P = 0.0075, AIC = 265.7, n = 100)$ (1)

$Ln (CON^{15}Cs_{OjL}) = 0.5779 Ln (ADR) + 0.4053 OT +$	- 4.6837
$(R^2 = 0.0905, P = 0.0100, AIC = 266.6, n = 100)$	(2)
Ln $(CON^{137}Cs_{OJL}) = 0.6716$ Ln $(ADR) + 2.3736$ Ln ((LT) -
$4.9451 \ (R^2 = 0.0938, P = 0.0084, AIC = 266.2, n = 10)$)0) (3)
$Ln (CON^{137}Cs_{OJL}) = 0.4012 OT + 1.8943 Ln (LT) -$	4.7244
$(R^2 = 0.0781, P = 0.0194, AIC = 267.9, n = 100)$	(4)
Ln $(CON^{137}Cs_{OjL}) = 0.6808$ Ln $(ADR) + 5.9599$ $(R^2 =$	0.0531,
P = 0.0211, AIC = 268.6, n = 100)	(5)
Ln $(CON^{137}Cs_{OjL}) = 0.4767 \ OT + 3.7557 \ (R^2 = 0.05)$	35, <i>P</i> =
0.0206, <i>AIC</i> = 268.6, <i>n</i> = 100)	(6)
Ln $(CON^{137}Cs_{OjL}) = 2.4148$ Ln $(LT) - 5.9778$ $(R^2 = 0.52778)$.0421, <i>P</i>
= 0.0405, AIC = 269.8, n = 100)	(7)

ここで、*CON*¹³⁷*Cs*_{ojL}はゼンマイ葉の¹³⁷*Cs*濃度 (Bq dry-kg⁻¹)、*ADR* (air dose rate)は空間線量率 (μ Sv h⁻¹)、*OT* は上木の被覆の程度を表す値で疎開地は 1、林縁は 2、林 内では 3 を取る。*LT* はゼンマイ個体の根元周りにおける リターの土地被覆面積割合 (%)である。これらのモデル は *ADR* が 0.14 ~ 0.46 μ Sv h⁻¹、*LT* が 60 ~ 100% の範囲に 適用される。

郡山31の生育地の空間線量率や上木、リターの値をモ デル1~7に代入して求めた¹³⁷Cs 濃度の予測値(Fig. 8) は、モデルによって異なるが31地点中25~30の予測値 は観測値の約1/5から5倍の間にあり、バラツキが大き かった。予測値の系統誤差は小さかった。予測値と観測 値の関係をべき乗式で近似したときの回帰線(一本鎖線, Fig. 8)を見ると、モデル1、3、4は1:1の線にほぼ重なり、 式の傾きも1に近かった(0.88~1.13)。モデル2、5、6 は回帰線の傾きが大きく(1.82~1.94)、¹³⁷Cs 濃度が低い ときに実際より高い濃度を予測する傾向、また、モデル7 は回帰線の傾きが小さく(0.648)、¹³⁷Cs 濃度が低いときに 実際より低い濃度を予測する傾向があった。

対数変換した郡山 100 の¹³⁷Cs 濃度の平均値と測定値の 差の SD が 0.9291 であったのに対して、3 変数のモデル 1 の予測値の観測値からの隔たり(残差)の SD は 0.8732 と 小さくなった。SD は同様に 2 変数のモデル 2 では 0.8860、 モデル 3 では 0.8844、モデル 4 では 0.8920、1 変数のモ デル 5 では 0.9041、モデル 6 では 0.9039、モデル 7 では

Fig. 8. モデルで予測したゼンマイの葉の¹³⁷**Cs** 濃度の検証(a ~ d) a: 空間線量率(*ADR*)、上木の被覆(*OT*)、リターの被覆(*LT*)の3要因モデル、b: *ADR*と*OT*の2要因モデル、 c: 同 *ADR*と*LT*、d: 同 *OT*と*LT*

0.9093 で、いずれも 0.9291 より小さい値であった。各モ デルの 95% の予測区間は、マハラノビス距離を D_i 、変数 の数を p、残差平方和を RSS としたとき、予測値 ± 95% の t 値 x ((1 + 1/n + D_i^2 /(n-1)) x RSS/(n - p - 1) ^0.5 で 表される (豊田 2012)。SD が減り、RSS が小さくなれば、 その分 n (検体数)を減らしても、同じ幅の予測区間を維 持できる可能性がある。そこでモデルを用いなかったと きの n を出荷制限の解除申請例(厚生労働省 2015a, b)を 参考に 60 とし、モデル 1 ~ 7を用いたときに同等の予測 区間が得られる n を計算したところ、変数が 3 つのモデ ル 1 では n = 62 であった。同様に、2 変数のモデル 2 ~ 4 では n = 61、1 変数のモデル 5 と 6 では n = 60、モデル 7 では n = 61 で、いずれの n も 60 未満にならなかった。

4. 考察

4.1 野生ゼンマイの生育地の特徴

野生ゼンマイの生育地はおもに斜面の中部から下部に かけての林縁や林内で、リターの被覆率の高い場所であっ た。ゼンマイは胞子で繁殖する植物で、胞子は小さい ので鉱質土壌がむき出しになった場所で発芽・定着し易 い。自然条件では崖や侵食地などで表土の移動がしばら く止まっている場所がそれに当たるが、養分に恵まれな いので、大きな個体には育たない。一方、そうした個体 が土砂ごと斜面下部にずり落ちた場合や、法面や側溝の ような人工物のそば、人や大型動物がよく立ち入る場所 で落葉が剥がされて鉱質土壌が現れた場所に定着した個 体は、大きくなれる。ゼンマイは土が深く肥沃な場所で よく育つ (愛媛県 1986)。また、林内では上木の間引きや

 Fig. 8. モデルで予測したゼンマイの葉の¹³⁷Cs 濃度の検証 (e~g)
e: ADR の1 要因モデル、f: 同 OT、g: 同 LT。実線

は予測値 = 観測値、上の破線は予測値 = 5 観測値、 下の破線は予測値 = 1/5 観測値の場合をそれぞれ 表す。一本鎖線は、予測値と観測値の関係をべき 乗式で近似したときの回帰線。

除草が行われ、日当りが良い条件を好む(新潟県森林研 究所 2011)。ゼンマイは茎頂に多数の未展開幼葉を持ち (Fig. 2)、新芽や葉を取り去られると速やかに新葉を展開 するので、夏に下草刈りが行われることの多い場所は他 の草木との競争がゼンマイに有利に働く。ゼンマイの大 群生は人の助力の結果であることが少なくない。森林公 園などで見られた、大きく育ったゼンマイの面積数 10 m² におよぶ群生地は、敷地管理のための下草刈りの結果で きたものと考えられる。

このような生育地の特徴が見られた郡山 100 のうち 81 例で、新芽の¹³⁴Cs と¹³⁷Cs 濃度の合計値が、出荷制限の 基準値 (100 Bq fresh-kg⁻¹) を超えると推定された。郡山市 では依然としてゼンマイの出荷制限が必要な状況にある ことが確かめられた。

4.2 ゼンマイの成長と¹³⁷Cs、⁴⁰K 濃度、量の季節的変化

チェルノブイリ原発事故後や福島原発事故後の調査 で、春から夏にかけて植物体が大きくなるときに¹³⁷Cs 濃度が低下する傾向が、落葉性多年草のミネハリイ (*Trichophorum caespitosum*)やヌマガヤ (*Molinia coerulea*) (Bunzl and Kracke 1989)、フキ(清野・赤間 2015)で報告 されている。ツツジ科の常緑樹 Calluna vulgaris では年 によって葉の濃度に季節的な低下が認められないことが あった (Bunzl and Kracke 1989)が、同じ年に幹では顕著 に濃度が低下しており、葉と幹を合わせたときの濃度に は多年草と同様の傾向があると見られる。

しかし、ゼンマイでは葉がほぼ展開を終えた5月でも 濃度が低下せず (Fig. 4b)、多年生植物でのこれまでの報

告とは異なるようである。地下部からの転流に加えて、 根から新たな吸収があった可能性がある。ゼンマイで、2 月から6月にかけて個体¹³⁷Cs量が増えた(Fig. 5c)のは、 その間に根から新たに¹³⁷Cs が吸収されたことを表す。同 じ時期、個体当たり ⁴⁰K 濃度は A、B 群で似たような値で 推移した (Fig. 5d)。葉も同様であった (Fig. 4c)。カリウ ムは植物の多量必須元素の一つであるので、これらはゼ ンマイにとって季節や部位に応じた適度なカリウム濃度 があることを示していると考えられる。セシウムは植物 の必須元素ではないが、カリウムとセシウムはともにア ルカリ金属で、植物が根から吸収するときに競合する(小 林 2013)。展葉期 (Fig. 4a) に必要なカリウムを吸収する ときに¹³⁷Csも吸収し、結果としてA群はB群より多く の量を吸収した (Fig. 5c, f) と考えられる。⁴⁰K で見られた ような濃度調節のしくみ (Fig. 4c, 5d) が¹³⁷Cs には働かな いために、¹³⁷Cs 濃度は変動が大きいのかも知れない。こ れは空間線量率と¹³⁷Cs 濃度との関係 (Fig. 7a) のバラツキ を大きくする一因となりうる。空間線量率はA群(0.125 $\sim 0.135 \,\mu Sv h^{-1}$)がB群(0.135 $\sim 0.16 \,\mu Sv h^{-1}$)より低かっ た。それにもかかわらず、A 群の ¹³⁷Cs 濃度は 5 月に B 群 の7倍も高かった(Fig. 5c)。

こうした違いが生じた理由として考えられることの一 つは、A、B 群の春の成長開始時期の違いである。芽吹き の時期は個体の栄養状態の影響を受ける(河合 2009)。A 群は、B群より遅れてバイオマスの増加が始まっており (Fig. 5a)、この時期(5月)の気温上昇で土壌有機物の分 解がより進み、増えた交換性の¹³⁷Csを根が吸収していた 可能性 (Burger and Lichtscheidl 2018) が考えられる。加え て、A 群では個体が小さく、貯蔵されているものが少な く、新たな吸収分が占める割合が大きいことも影響して いる可能性も考えられる。A 群は B 群より短時間でバイ オマスを置き換えているようであった(3.5)。濃度の季節 変化は、貯蔵分の利用に加え、新たな吸収と個体の成長 のバランスで決まる。B 群は、A 群と比べて吸収と成長 のバランスが取れていたのに対して、A 群は成長の開始 が遅れたのでリターや土壌有機物の分解が始まってから 急成長し、それにともなって¹³⁷Csの吸収も急激であった と考えられる。フキでも40Kと比べ137Cs濃度の季節変化 が大きかった(清野・赤間 2017)。ゼンマイと同様に⁴⁰K で見られたような濃度調節のしくみが¹³⁷Cs に働かないた めに、¹³⁷Cs 濃度の変動が大きくなったと考えられる。

4.3 ゼンマイの葉の¹³⁷Cs 濃度と関係する環境条件

ゼンマイの葉¹³⁷Cs 濃度と有意な関係があると判断され た環境条件は、空間線量率と上木の多寡、リターの多寡 であった (Fig. 7)。ただし、それぞれとの単回帰の決定係 数の値は小さく (*R*² = 0.0421 ~ 0.1167)、データのバラツ キは大きかった。空間線量率や上木、リターの状態が同 じでも¹³⁷Cs 濃度が 100 倍違う場合があった。換言すると、 空間線量率が数倍違っても、それでゼンマイの放射性セ シウム濃度が違うとは限らないという結果であった。上 木の多寡については、事故時に放出された放射性セシウ ムを周囲より高い木が樹冠にいったん捉えて樹下に落と し、ゼンマイがそれを吸収した結果と考えられる。地表 付近の空間線量率が、孤立したアカマツ樹群の下で目立っ て高く、そのアカマツの落葉に事故時に直接付着したと 考えられる比較的高濃度の¹³⁷Cs が含まれていることが報 告されている(清野 2014)。

空間線量率はリター中の¹³⁷Csとは有意な関係がな く(Fig. 6c)、土壌中の¹³⁷Csと有意な相関関係にあった (Fig. 6d)。表層 0 ~ 0.05 m の土壌にはリター中の量の約 4 倍の放射性セシウムがあった。空間線量率を計測した 地上高 1 m の位置から見ると、リターまでの距離とその 下の表層 0 ~ 0.05 m の土壌までの距離の違いは殆ど無視 できるので、地上高 1 m の空間線量率はリターよりも土 壌中の放射性セシウム量に影響されて変化しているよう である。

ゼンマイへの¹³⁷Cs の移行に関しては、ゼンマイの根は 地表面から深さ $0.1 \sim 0.17$ m までの間におもに分布する ので、表層数 cm の土壌に多くが分布する土壌中の¹³⁷Cs (松 田・斎藤, fukushima.jaea.go.jp/initiatives/cat03/pdf08/Part1-6. pdf)の位置に届いているはずである。しかし、土壌中の ¹³⁷Cs は、ゼンマイの葉¹³⁷Cs 濃度とは有意な関係がなかっ た (Fig. 6b)。これは土壌の¹³⁷Cs の総量が多くても、交換 性の¹³⁷Cs が多いとは限らないことを示唆している。土壌 中の¹³⁷Cs がゼンマイの根にとって吸収しにくい状態にあ る理由として、事故から時間が経ち、土壌に吸着(日本農 学会 2011)された¹³⁷Cs が増えていることが考えられる。

一方、リターはその¹³⁷Cs 沈着量がゼンマイの葉の¹³⁷Cs 濃度と有意な関係にあった。リターには表層土壌より も多くの交換性セシウムが含まれており(山本ら 2014)、 ¹³⁷Cs がゼンマイに吸収され易い形態で維持されていると 考えられる。落葉はゼンマイ自身(Fig. 4b, 黄葉や枯れが 進んだ9月の葉にも¹³⁷Cs が含まれていた)、また、上木 のあるところでは上木からももたらされるので、ゼンマ イではリターが¹³⁷Cs の重要な供給源と考えられる。

なお、空間線量率がゼンマイの葉の¹³⁷Cs 濃度と有意 ではあっても決定係数の低い関係しか見られなかった (Fig. 7a)他の理由として、地表面から1mの高さの空間 線量率が、ゼンマイの根系の範囲(椚平プロットA、B群 では個体の中心から0.3~0.5m)の物質からの放射線だ けを計測しているのではなく、その周囲からの放射線も 計測していることや、降水の有無(大瀧ら2013)、土壌 の種類による遮蔽の違いといった計測対象や計測条件の 影響が考えられる。

その他の環境条件については、事故の翌春(清野・赤間 2013)や翌々春(Kiyono and Akama 2013)の調査で、ゼンマイを含む山菜の放射性セシウム濃度が、窪地や谷型をした地形など地表面水や地下水が集まりやすい場所では高いことが報告されている。しかし、今回のゼンマイ

では、生育地の斜面上の位置はゼンマイの放射性セシウ ム濃度と有意な関係はなかった。事故から年数が経つに つれ、交換性の放射性セシウムの地形に沿った分布が変 化し、地形による違いがなくなっているのかも知れない。 地形は事故後1~2年は山菜の放射性セシウム濃度の指 標として価値が高かったが、現在は価値が低下している 可能性がある。

4.4 出荷制限解除のための新芽の検体採取の負担の軽減 化の可能性

郡山100で作成した¹³⁷Cs 濃度の予測モデルを郡山31 で 検証した結果、予測値と観測値の間の系統誤差は小さく (Fig. 8)、モデルの正確さ (accuracy) は高いと考えられた。 「高い放射性セシウム濃度の検出が見込まれる地点」は空 間線量率が高く、上木やリターが多い場所であった。新芽 の検体採取の際にこうした情報を利用し、濃度が高いと 考えられる場所を選んで優先することは、出荷制限解除 のための検体採取の効率化につながる可能性がある。一

方、ゼンマイの新芽の検体を採取する際に、空間線量率 や上木、リターの状態を調べ、それらを変数に持つ予測 モデルを利用すると、放射性セシウム濃度の予測値から の隔たりが減り、予測精度を上げられると期待した。し かし、この SD の減少の程度は大きなものではなく、モデ ルの変数の利用による自由度の減少に相殺され、モデル を利用しても現行の目安である 60 検体で得られる予測区 間を、目安より少ない検体数で得ることはできなかった。

モデルの利用により検体数を減らせるのは、モデルの 予測値と観測値の残差が、今回よりも顕著に小さくなる 場合である。検体採取の際に放射性セシウム濃度と関係 がある空間線量率などの条件の範囲が広く含まれるよう な方法でデータを収集することで、モデルの不確実性は 低下できる(野間口・野間口 2007)。しかし、それでは予 測値の残差は必ずしも小さくならない。検体採取の負担 の大幅な軽減化を図るにはゼンマイの個々の検体の¹³⁷Cs 濃度の違いの理由を十分に説明できるようにする必要が ある。現時点では、出荷制限解除のための検体採取は、 市町村など出荷制限対象の地理的スケールに応じて、系 統的に多数の検体を採取して濃度の高いものが現れる確 率を評価、利用する宮城県(厚生労働省 2015a)や岩手県 (厚生労働省 2015b)のやり方が、ゼンマイについても現 実的と考えられる。

5. 結論

空間線量率や上木、リターの被覆といった、生育地で 比較的容易に測定でき、葉の¹³⁷Cs 濃度と関係する環境 条件の情報を変数に持つモデルを利用しても、ゼンマイ の葉の¹³⁷Cs 濃度の 95% 予測区間を同じ精度で求めるの に必要な検体数を減らせなかった。一見、同じような生 育条件、放射性セシウムの汚染状況にあって、検体間で ¹³⁷Cs 濃度が非常に大きく異なる理由を解明する必要があ る。植物季節の違いにバラツキの理由の一端を知ること ができた。バラツキが大きいことが、ゼンマイの特性に もとづくのか、他の植物にも通じることなのかまだ分か らない。同様の調査を他の山菜についても行って、比較 の材料を増やしたい。

謝 辞

福島県農林水産部林業振興課(郡山市東部森林公園)、 福島県林業研究センター、学校法人新潟総合学院(大槻 公園)、公益財団法人福島県都市公園・緑化協会(逢瀬公 園)、郡山市森林組合(郡山市高篠山森林公園)、林野庁 関東森林管理局福島森林管理署、磐城森林管理署、会津 森林管理署南会津支署、茨城森林管理署の各位には現地 調査と検体採取において協力を頂いた。国立研究開発法 人森林研究・整備機構森林総合研究所震災復興・放射性 物質研究拠点の各位には検体の調整と放射性セシウムの 測定をして頂いた。以上の皆様に、感謝の意を表する。

本研究は日本特用林産振興会のきのこ原木等の放射性 物質調査事業の一環として実施した。また、JSPS 科研費 JP15K07496の助成を受けた。

引用文献

- Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. Proceedings of the 2_{nd} International Symposium on Information Theory, Petrov, B. N., and Caski, F. (eds.), Akadimiai Kiado, Budapest, 267-281.
- Bunzl, K. and Kracke, W. (1989) Seasonal variation of soilto-plant transfer of K and fallout ^{134, 137}Cs in peatland vegetation. Health Physics, 57(4), 593-600.
- Burger, A. and Lichtscheidl, I. (2018) Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation., Science of the Total Environment, 618, 1459-1485.
- 愛媛県 (1986) ゼンマイの栽培. 山菜の栽培技術指針―ゼ ンマイ・ワラビ・タラノメ・ワサビ―, 昭和 60 年 度緊急技術改善, 普及事業, http://www.pref.ehime.jp/ h35700/1461/5_guide/5_sansai.html, (参照 2017-11-15).
- 原子力災害対策本部 (2015) "検査計画、出荷制限等の品 目・区域の設定・解除の考え方", 食品中の放射性物 質に関する「検査計画、出荷制限等の品目・区域の 設定・解除の考え方」の改正, 厚生労働省, http://www. mhlw.go.jp/stf/houdou/0000043164.html, (参照 2016-10-03).
- 長谷川 孝則・竹原 太賀司 (2016) 山菜類の放射性物質 による汚染実態調査と汚染逓減法の検討. 福島県林業 研究センター研究報告, 48, 65-76.
- 河合 昌孝 (2009) 奈良県における山菜類の調査. 奈良県 林業技術センター研究報告, 38, 69-74.

- 清野 嘉之(2014) 生垣ぞいの道の空間線量率の変化-2011 年秋から 2012 年末まで. 関東森林研究, 65(1), 163-164.
- 清野 嘉之・赤間 亮夫 (2013) 2012 年春の山菜の放射 能濃度. 関東森林研究, 64(2), 77-80.
- Kiyono, Y. and Akama, A. (2013) Radioactive cesium contamination of edible wild plants after the accident at the Fukushima Daiichi Nuclear Power Plant. The Japanese Society of Forest Environment, 55(2), 113-118.
- Kiyono, Y. and Akama, A. (2015) The amount of ¹³⁷Cs deposition and transfer ratio of ¹³⁷Cs to wild edible-wildplants after the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. Proceeding of the International Symposium on Radiological Issues for Fukushima's Revitalized Future, Paruse Iizaka, Fukushima City, Japan, May 30–31 (Sat. –Sun.), 2015, 57-61.
- 清野 嘉之・赤間 亮夫(2015) 栽培フキ(Petasites japonicus)の放射性セシウム汚染の季節変化. 日林誌, 97, 158-164.
- 清野 嘉之・赤間 亮夫 (2017) 山菜と放射性物質.水利 科学, 355, 36-50.
- 清野 嘉之・赤間 亮夫 (2018) 野生山菜の放射性セシウ ム濃度:福島第一原発事故後の経年的トレンド.関東 森林研究, 69 (印刷中).
- 清野 嘉之・小松 雅史・赤間 亮夫・松浦 俊也・広 井 勝・岩谷 宗彦・二元 隆 (2016) 野生ゼンマイ 131 個体の葉の放射性セシウム濃度. 第5回環境放射 能除染研究発表会要旨集, 一般社団法人環境放射能除 染学会, 18.
- 小林 奈通子 (2013) 放射性セシウムを減らす! なぜカ リウムで? 一 植物研究者の思考回路 一. 第4回サイ エンスカフェ「放射性セシウムを減らす!なぜカリ ウムで?」配布資料,東京大学大学院農学生命科学研 究科食の安全研究センター, http://www.frc.a.u-tokyo. ac.jp/information/news/130727_report.html, (参照 2017-11-06).
- 厚生労働省(2015a)原子力災害対策特別措置法第20条 第2項の規定に基づく食品の出荷制限の設定及び解 除(原子力災害対策本部長指示),平成27年5月25 日 医薬食品局食品安全部,http://www.mhlw.go.jp/stf/ houdou/0000086680.html,(参照2016-10-03).
- 厚生労働省(2015b)原子力災害対策特別措置法第20条 第2項の規定に基づく食品の出荷制限の解除(原子 力災害対策本部長指示),平成27年12月21日 医薬・ 生活衛生局生活衛生・食品安全部, http://www.mhlw. go.jp/stf/houdou/0000107702.html,(参照2016-10-03).
- 厚生労働省(2017a)原子力災害対策特別措置法第20条第 2項の規定に基づく食品の出荷制限の解除(原子力災 害対策本部長指示),平成29年5月23日 医薬・生活 衛生局生活衛生・食品安全部,http://www.mhlw.go.jp/

stf/houdou/0000165600.html, (参照 2017-11-17).

- 厚生労働省(2017b)原子力災害対策特別措置法第20条第 2項の規定に基づく食品の出荷制限の解除(原子力災 害対策本部長指示),平成29年7月24日 医薬・生活 衛 生 局, http://www.mhlw.go.jp/stf/houdou/0000172292. html, (参照2017-11-17).
- 厚生労働省(2017c)原子力災害対策特別措置法第20条第 2項の規定に基づく食品の出荷制限の解除(原子力災 害対策本部長指示),平成29年9月11日 医薬・生活 衛 生 局, http://www.mhlw.go.jp/stf/houdou/0000176997. html, (参照2017-11-17).
- 倉田 悟・中池 敏夫 (1990) 日本のシダ植物図鑑 分布・ 生態・分類 〈6〉、東京大学出版会, 881pp.
- 産業技術総合研究所地質調査総合センター (2015) 20 万分 の1日本シームレス地質図 2015 年 5 月 29 日版. 産業 技術総合研究所地質調査総合センター, https://gbank. gsj.jp/seamless/seamless2015/2d/, (参照 2016-10-03).
- 松田 規宏・斎藤 公明. 土壌中の放射性セシウムの深 度分布調査. fukushima.jaea.go.jp/initiatives/cat03/pdf08/ Part1-6.pdf, (参照 2016-10-03).
- 文部科学省 (2013) ①第6次航空機モニタリングの測定結 果、及び②福島第一原子力発電所から80km 圏外の 航空機モニタリングの測定結果について.平成25年 3月1日プレスリリース,文部科学省,radioactivity.nsr. go.jp/ja/contents/7000/6749/.../191_258_0301_18.pdf, (参 照 2016-10-03).
- 日本農学会 (2011) 東日本大震災からの農林水産業の復興 に向けて - 認識・理解・テクニカル・リコメンデーショ ン -. http://www.ajass.jp/image/recom2012.1.13.pdf, (参照 2016-10-03).
- 新潟県森林研究所 (2011) ゼンマイ (Osmunda japonica). 関東・中部地域で林地生産を目指す特用林産物の安 定生産技術マニュアル, 農林水産省実用技術開発事業 (高度化事業) 18021,「関東・中部の中山間地域を活 性化する特用林産物の生産技術の開発」成果集 I, 森 林総合研究所, 194pp.
- 農林水産省(2016)特用林産物生産統計調査. 49: 山菜の 生産量,Ⅱ品目別資料,平成 26 年特用林産基礎資料, http://www.maff.go.jp/j/tokei/kouhyou/tokuyo_rinsan/, (参照 2016-10-03).
- 野間口 謙太郎・野間口 眞太郎 (訳) (2007) 一般線形 モデルによる生物化学のための現代統計学一あな たの実験をどのように解析するか—. 原題: Modern statistics for the life sciences. Grafen A, Hails R (著), 共 立出版, 335pp.
- 大瀧 慈・大谷 敬子・今中 哲二・遠藤 暁・星 正 治(2013)東京電力福島第一原子力発電所近隣地域に おける空間放射線量率と直下土壌の放射能汚染度と の関連について.統計数理, 61(2), 247–256.
- R Development Core Team (2011) R: A language and

environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

- 林野庁 (2017) きのこや野生山菜の出荷制限等の状況 について. http://www.rinya.maff.go.jp/j/tokuyou/kinoko/ syukkaseigen.html, (参照 2017-07-28).
- 田上 恵子・内田 滋夫 (2015) 山菜と果実の調理・加工 による放射性セシウムおよびカリウムの除去割合に ついて. 第4回 京都大学原子炉実験所 原子力安全基 盤科学研究シンポジウム 福島の復興に向けての放射 線対策に関するこれからの課題 報告書, 47-50.
- 豊田 秀樹 (2012) 回帰分析入門 R で学ぶ最新データ解 析. 東京図書, 252pp.
- 山本 理恵・小林 達明・江幡 知紗・篠崎 敬太・小 嶋 大地・太田 祥子・宮本ウルルマ・高橋 輝昌・ 鈴木 弘行・関崎 益夫・星澤 保弘・小竹守 敏彦・ 保高 徹生・辻 英樹 (2014) 原発事故被災地の丘陵 地広葉樹斜面林における林床放射能低減試験とその 後の水土流出. 日緑工誌, 40(1), 130-135.
- 八杉 龍一・小関 治男・古谷 雅樹・日高 敏隆(1996)岩波生物学辞典第4版. 岩波書店, 2027pp.

Appendix 1

放射性セシウムの時間的変化の傾向(トレンド)の解明の 課題

出荷制限解除の要件の一つである「検査結果が安定し て基準値を下回ることを確認する」(原子力災害対策本部 2015)うえで、季節変化、経年変化といった、時間軸に沿っ た変化の傾向(トレンド)の把握(田上・内田 2015,清野・ 赤間 2017, 2018)が重要である。同じような生育条件・放 射性セシウムの汚染状況にあっても、検体間で¹³⁷Cs 濃度 のバラツキが非常に大きいことを考えると、山菜の放射 性セシウム濃度の時間的変化に関しては、同じ個体(集 団)を調べることが非常に有利である。

森林に生育する同一個体(集団)について放射性セシ ウムの挙動を季節的・経年的に調べた事例(清野・赤間 2017, 2018)は、ゼンマイに限らず少ない。放射性核種の 崩壊速度から見積もられる¹³⁷Csの物理的減衰と異なる速 度変化が植物体中で観測された場合に、どのような条件 が関係しているのか、判断する材料が現時点では乏しい。 季節的・経年的変化の解明には、環境中の交換性の¹³⁷Cs 量の変化とともに、個体レベルの¹³⁷Cs吸収や転流、排出 といった代謝の解明が重要である。

Appendix 2

検出下限値に届かなかった場合(不検出)の測定値の扱い について

今回、ゼンマイ葉の一部の検体で¹³⁴Cs 濃度が不検出と なったのは、検体量が少なかったことが一因であった。 放射性セシウムの濃度が薄く、検体量が少ないと放射性 セシウムの測定に長い時間がかかる。今回の場合は、濃 度にもよるが、¹³⁴Cs の検出下限を上回るには、調査時点 の生重で約 80 g 以上、できれば 200 g の検体の採取が必 要であった。

不検出となったデータの取り扱いには必ずしも定まっ た決まりがない。検出下限値をそのまま使う例(厚生 労働省 2015a)、検出下限値の 1/2 とする例(厚生労働省 2015b)がある。¹³⁷Csが検出され、¹³⁴Cs だけ不検出のとき は、他の検体で得られた¹³⁴Cs/¹³⁷Cs 濃度比を使ったり、検 出された¹³⁷Cs が全て事故で排出されたと仮定し、放射性 崩壊の理論比から¹³⁴Cs 濃度を推定したりすることも考え られる。こうした扱いによって集計の結果が変わるので その影響について注意が要る(Kiyono and Akama 2015)。

本研究では、山菜が食品であることから食品の取り扱いに準じ、放射性核種が不検出で実際の値(真値)が分か らないときは検出下限値で代用した。

The transfer of radiocesium released in the 2011 Fukushima Daiichi Nuclear Power Station accident to leaves of wild *Osmunda japonica*, an edible fern

Yoshiyuki KIYONO^{1)*}, Masabumi KOMATSU²⁾, Akio AKAMA³⁾, Toshiya MATSUURA⁴⁾, Masaru HIROI⁵⁾, Munehiko IWAYA⁶⁾ and Takashi FUTAMOTO⁶⁾

Abstract

Following the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station accident in March 2011, shipping restrictions were imposed on more than 10 Japanese edible wild-plant species (July 31, 2017) in which high levels of radiocesium (¹³⁴⁺¹³⁷Cs) were detected. However, few studies have examined radiocesium transfer from the environment to edible wild plants or the factors that affect this transfer; therefore, it is difficult to assess current criteria for determining whether shipping restrictions should remain in place. In this study, we sampled leaves of wild zenmai (Osmunda japonica), an edible fern, from 131 habitats in Koriyama, Fukushima Prefecture, Japan, in July and August 2015. We also collected data for environmental factors that could affect ¹³⁷Cs transfer to wild plants. Multiple regression analysis showed that zenmai leaf ¹³⁷Cs concentrations had significant relationships with several environmental factors including litter ¹³⁷Cs amounts, air dose rates, canopy coverage, and litter coverage. Using the latter three environmental factors as parameters, models to predict ¹³⁷Cs concentrations in *zenmai* leaves were constructed using 100 samples and verified with the remaining 31 samples. The results showed low systematic error and high accuracy. However, model precision was low, with predicted values distributed between about 1/5 and 5 times observed values. Because the residual sums of squares between the measured and predicted values were large, we concluded that information about these three environmental factors could not reduce the number of samples required to cancel shipping restrictions on wild zenmai from the current standard (60) without also reducing prediction accuracy. Differences in phenology may have contributed to the variation in ¹³⁷Cs concentrations observed in this study. Future studies should clarify the mechanism that causes this large variation.

Key words: air dose rate, edible wild plant, fern, prediction model of radiocesium concentration, radiocesium deposition, shipping restrictions, standard concentration values for food

Received 1 August 2017, Accepted 30 March 2018

¹⁾ Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI)

²⁾ Department of Mushroom Science and Forest Microbiology, FFPRI

³⁾ Center for Forest Restoration and Radioecology, FFPRI

⁴⁾ Department of Forest Management, FFPRI

⁵⁾ Koriyama Women's University

⁶⁾ Japan Special Forest Product Promotion Association

^{*} Department of Plant Ecology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN; e-mail: kiono@ffpri.affrc.go.jp