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INTRODUCTION

Synchronous spawning is a striking feature of corals. 
The timing of their reproduction is generally fixed within a 
specific season, lunar phase, and time of day, and reproduc-
tive events are highly synchronized within a given species. 
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Synchronous spawning is a striking feature of coral. Although it is important for reproductive suc-
cess, corals reallocate energy for reproduction to growth when they are damaged by external 
stimuli. To assess the transcriptome before and after spawning in the scleractinian coral Acropora 
tenuis, we tagged three colonies (one bleached and two unbleached) in the field around Sesoko 
Island (Okinawa, Japan) in November 2016, sampled them monthly from May to July 2017, and per-
formed RNA sequencing (RNA-Seq) analysis. Histological analysis revealed that the previously 
bleached colony possessed gametes in June, by which time the other two colonies had already 
spawned. In RNA-Seq analyses, multi-dimensional scaling based on gene expression similarity 
among the samples reflected the differences between colonies and between months except for the 
sample of a non-spawned colony in May, which was similar to the samples in June. The similarity 
of the non-spawned colony sample in May to the samples in June was also shown in hierarchical 
clustering based on the expression patterns of the genes that were differentially expressed 
between months in the spawned colonies. These results suggest that non-spawning was already 
decided in May, and that the physiological condition in a non-spawned colony in May was advanced 
to June. RNA-Seq analysis also showed that genes related to gametogenesis and those related to 
apoptosis were upregulated before and after spawning, respectively.

Key words:  coral reproduction, coral spawning, coral bleaching, Acropora tenuis, whole transcriptome 
analysis, RNA-seq, vitellogenin, apoptosis

Synchronous spawning has been documented in many coral 
reefs from tropical to temperate regions (Harrison et al., 
1984; Babcock et al., 1986, 1994; Hayashibara et al., 1993; 
Nozawa et al., 2006). This tight time window for reproduction 
is considered to ensure opportunities for fertilization, 
increase the abundance of outcrosses, and avoid predation, 
e.g., by planktivorous fish species (Babcock et al., 1986; 
Westneat and Resing, 1988; Domeier and Colin, 1997; 
Carlon, 1999).

Although synchronous spawning is important for repro-
ductive success, corals reallocate energy for reproduction to 
growth upon sustaining damage by external stimuli. For 
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example, when Acropora formosa (=  Acropora muricata) 
was divided into fragments artificially and transplanted in the 
field, the oocytes in small fragments were resorbed, while 
those in large fragments were not, and the fragments that 
had resorbed their oocytes showed a higher growth rate 
than those that had spawned (Okubo et al., 2005, 2007). 
Therefore, when investigating coral reproduction in the field, 
it is important to check the corals’ gonadal conditions and 
confirm their spawning. Coral bleaching refers to the expul-
sion of dinoflagellate symbionts, commonly known as zoo-
xanthellae, from host corals. It is induced by environmental 
extremes, such as high temperature and irradiance (Brown, 
1997; Douglas, 2003). Bleaching also impairs coral repro-
duction, and several coral species show decreased abun-
dance and/or quality of gametes after bleaching (Szmant 
and Gassman, 1990; Michalek-Wagner and Willis, 2001; 
Johnston et al., 2020). The reallocation of energy from repro-
duction to growth is important for determining whether to 
prioritize growth or reproductive success, but little is known 
about when and how corals make this decision.

Acropora is the most diverse genus of scleractinian 
coral, and includes the greatest number of species (Wallace, 
1999). Acropora corals are hermaphroditic species that pro-
duce and release “bundles” (sacs containing eggs and 
sperms) in each polyp during spawning. In the Ryukyu 
Archipelago, most Acropora corals spawn within several 
days around the full moon in May and/or June (Isomura and 
Fukami, 2018; Baird et al., 2021a). The molecular mecha-
nisms of reproduction in Acropora corals have been investi-
gated in Acropora digitifera by transcriptomics analysis 
(RNA sequencing; RNA-Seq) mainly focusing on spawning 
with reference to lunar and diurnal time points (Rosenberg et 
al., 2017, 2019). To gain further insight into the molecular 
mechanisms underlying Acropora coral reproduction, we 
performed RNA-Seq analysis focusing on gonadal develop-
ment prior to spawning in another Acropora coral species, 
Acropora tenuis. Within Acropora, A. tenuis is considered to 
have evolved in a more basal clade than A. digitifera (van 
Oppen et al., 2001; Shinzato et al., 2021) and its gonadal 
development in the Ryukyu Archipelago was documented 
previously (Tan et al., 2020). That previous study showed 
that small oocytes for the next spawning can be observed in 
July, 1 month after spawning, develop gradually until 1 
month before the next spawning, and undergo marked mat-
uration in the last month (Tan et al., 2020). Based on these 
observations, we performed RNA-Seq analysis in A. tenuis 
between 1 month before and 1 month after spawning, when 
the most drastic changes in the gonad could be observed.

In 2016, we tagged three colonies of A. tenuis in the field 
around Sesoko Island (Okinawa, Japan), an island in the 
Ryukyu Archipelago, and sampled them every month from 
May to July 2017. In the field observations before sampling, 
we found that one of three colonies experienced bleaching 
that occurred in 2016 (Kayanne et al., 2017). Histological 
observations revealed that the previously bleached colony 
still possessed gametes in June 2017, by which time the 
other two colonies had already spawned. Therefore, we 
could compare gene expression between the non-spawned 
and spawned colonies. RNA-Seq analyses revealed that dif-
ferences between colonies and between months were 
reflected by multidimensional scaling (MDS) based on simi-

larities in gene expression among the samples, except for 
the sample of a non-spawned colony in May, which was 
similar to that in June. These observations suggested that 
non-spawning was decided in May, and that the physiologi-
cal condition in a non-spawned colony in May was advanced 
to June. The results of RNA-Seq analysis also showed that 
the genes related to gametogenesis and those related to 
apoptosis were upregulated before and after spawning, 
respectively.

MATERIALS AND METHODS

Coral collection
In November 2016, we tagged one bleached (colony 1, C1) and 

two unbleached colonies (C2 and C3), at reefs around Sesoko 
Island, Okinawa Prefecture, Japan (26°63′11″N, 127°86′33″E) at a 
depth of about 1.5–2.0 m during low tide by skin diving. Their condi-
tion was observed every 1–2 months from the time of attaching tags 
until commencement of sampling. From May to July 2017, the 
branches (3–4 cm in length) around the outer edge of each colony 
were collected monthly using pliers. The collected branches were 
subjected to histological observation of the gonads and RNA 
extraction for RNA-Seq analysis and qPCR validation. For addi-
tional qPCR validation in another year, a further two colonies were 
tagged in August 2019 in addition to C1, C2, and C3, and we col-
lected branches from a total of five colonies from April to September 
2020. Sampling was conducted on a day around the full moon (see 
Supplementary Table S1) and a day around the new moon in May 
2020. Immediately after collection, the branches were transferred 
to Sesoko Station of Tropical Biosphere Research Center, Univer-
sity of the Ryukyus. The collection of corals was approved by the 
Okinawa Prefectural Government (Approval nos. 28-84 [2017] and 
2-1 [2020]).

Histological observation
To check the reproductive condition of the collected corals, 

their gonads were examined by hematoxylin and eosin (HE) stain-
ing, as described previously (Tan et al., 2020). After collection, 
some branches were fixed in Bouin’s solution overnight at 4°C. 
Then they were decalcified in Morse’s solution for 3–5 days. Fol-
lowing dehydration in a graded ethanol series and clearing with 
xylene, portions of the coral tissue were embedded in paraffin, cut 
into serial sections at 4 μm, and stained with HE for microscopic 
observation. The sizes of randomly selected oocytes with visible 
nuclei were measured using ImageJ64 software (National Institutes 
of Health, Bethesda, MD, USA). The diameter of each oocyte was 
expressed as the geometric mean of the maximum diameter and 
the widest diameter perpendicular to the maximum diameter. For 
statistical analysis of the size of oocytes, parametric or non-para-
metric methods were applied based on the outcomes of Bartlett’s 
homogeneity and Shapiro–Wilk normality tests. For comparison 
among colonies in May, the non-parametric Kruskal–Wallis rank 
sum test and Steel–Dwass test were used. The parametric t test 
was applied for comparisons between May and June in C1.

RNA extraction
Coral branches not used for histological observation were fixed 

in RNAlater solution in 2017 and flash-frozen in liquid nitrogen in 
2020. The samples were stored at –80°C for further processing. 
After completion of annual sampling, the branches were crushed to 
a fine powder using a liquid nitrogen-cooled mill. The branches 
stored in RNAlater solution were thawed at 4°C overnight, placed 
into the mill immediately after removing RNAlater solution, and 
flash-frozen in liquid nitrogen. The crushed branches were mixed 
with TriPure isolation reagent (Sigma-Aldrich, St. Louis, MO, USA) 
on ice, and total RNA was extracted according to the manufactur-
er’s instructions. RNA was purified using the SV total RNA isolation 
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system (Promega, Madison, WI, USA).

RNA-Seq analysis
RNA samples were transported to Genewiz Japan Corp. 

(Saitama, Japan) for cDNA library preparation and HiSeq 2500 2 × 
150 bp paired-end read sequencing (Illumina, San Diego, CA, 
USA). The sequence datasets generated in this study are available 
in GenBank/EMBL/DDBJ with the accession number PRJDB11485. 
The reference sequences, the genome of A. tenuis (Acropora 
tenuis genome v. 0.11, http://aten.reefgenomics.org/download/, last 
accessed on 9 May 2022), symbiotic zooxanthella Symbiodinium 
goreaui, a major symbiont of scleractinian corals in the Ryukyu 
Archipelago (Baker, 2003; LaJeunesse et al., 2004), and Symbio-
dinium kawagutii (Symbiodinium genomes v. 1.0, http://symbs.
reefgenomics.org/download/, last accessed on 9 May 2022), were 
downloaded from Reefgenomics, a repository for marine genomics 
data (ReFuGe 2020 Consortium, 2015; Liew et al., 2016). After 
adapter sequences were trimmed with a minimum length of 100 bp 
using Trimmomatic (Bolger et al., 2014), the raw reads were aligned 
against these reference genomes using HISAT2 v. 2.1.0 (Kim et al., 
2019) with the default settings. Read mapping to S. kawagutii was 
performed to confirm that the S. goreaui genome was a better refer-
ence than the S. kawagutii genome in this experiment. Although S. 
goreaui and S. kawagutii were revised as Cladocopium goreaui 
and Fugacium kawagutii, respectively (LaJeunesse et al., 2018), 
the old species names are used in this paper for consistency with 
the names of the reference genome datasets. The reads aligned to 
each genome were sorted and counted using SAMtools v. 1.5 (Li et 
al., 2009; Danecek et al., 2021) and HTSeq v. 0.11.2. (Anders et al., 
2015) with the default settings. There were 15,995 and 20,480 puta-
tive transcripts to which at least one read was mapped in all sam-
ples in A. tenuis and S. goreaui, respectively, and they were used in 
further analyses. Due to the small number of mapped reads, no 
further analysis was performed on S. kawagutii.

The similarity of gene expression profiles among samples was 
examined in A. tenuis and S. goreaui by MDS based on Spearman’s 
rank correlation coefficient (1 – rho), calculated from the number of 
reads mapped to the transcripts. The differentially expressed genes 
(DEGs) in A. tenuis between colonies and months were detected 
using the TCC v. 1.26.0 (Sun et al., 2013) and edgeR v. 3.28.1 
(Robinson et al., 2010) packages in R (v. 3.3.0; R Development 
Core Team, Vienna, Austria) with trimmed mean of M-values (TMM) 
normalization. Genes showing significantly different expression 
levels in multiple comparisons between colonies and months, 
according to analysis of variance (q <  0.05), were defined as col-
ony- and month-DEGs, respectively. Next, month-DEGs in spawned 
colonies were screened. Hierarchical clustering and heatmaps of 
DEGs were performed based on transcripts per million (TPM) using 
the hclust and heatmap.2 functions of the R package gplots v. 3.1.1 
(Warnes et al., 2020). Gene annotations were assigned by querying 
putative transcript sequences against the National Center for Bio-
technology Information (NCBI) GenBank non-redundant protein 
database using blastx (e-value <  1e − 5).

qPCR validation
To validate the RNA-Seq results, the mRNA levels of represen-

tative genes were determined by qPCR. We selected representa-
tive genes related to gametogenesis and apoptosis based on gene 
annotations and RNA-Seq expression analyses (see Supplemen-
tary Table S2), because these two physiological functions have 
been investigated in coral species (Shikina et al., 2012, 2013, 2020; 
Moya et al., 2016; Tan et al., 2020, 2021). In 2017, RNA samples 
extracted from one branch other than those used for RNA-Seq were 
analyzed, and two to four replicates could be prepared for each 
colony in each month. In 2020, the RNA extracted from one branch 
of each colony was considered one replicate, and five replicates 
were prepared each month. cDNA was synthesized from each RNA 

sample using a High-Capacity cDNA Reverse Transcription Kit 
(Thermo Fisher Scientific, Waltham, MA, USA). For representative 
genes not cloned in previous studies, the fragments were amplified 
using GoTaq DNA polymerase (Promega), cloned into the pGEM-T 
Easy vector (Promega), and sequenced to confirm their presence 
and sequence before qPCR. qPCR was performed using a CFX96 
Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, 
CA, USA) and a TB Green Premix PCR Kit (TaKaRa Bio, Kusatsu, 
Japan) in duplicate. Melting-curve analysis was performed to 
ensure amplification of single amplicons. The mRNA levels of tar-
get genes were normalized relative to those of β-actin and ef1α 

Fig. 1.  Colonies of Acropora tenuis in November (A–C) and 
December (D) 2016, and January 2017 (E). Three colonies, C1 
(Colony 1, [A, D, E]), C2 (B), and C3 (C), were sampled in 2017. The 
asterisks in the photographs of C1 (A, D, E) indicate the same part 
of the colony.
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(internal controls). The primers used in this study are shown in 
Supplementary Table S3. For statistical analysis, the non-
parametric Kruskal–Wallis rank sum test was applied based on the 
outcomes of Bartlett’s homogeneity and Shapiro–Wilk normality 
tests. For multiple pairwise comparisons, Dunn’s test was used to 
compare the means among groups.

RESULTS

Field observations
In November 2016, when we tagged three colonies (C1–

C3), bleaching was observed in C1, with most branches pal-
ing in color (Fig. 1A). In the summer of 2016, coral reefs in 
Ryukyu Archipelago suffered from extensive bleaching 
(Kayanne et al., 2017), and C1 seemed not to have recov-
ered from it. In C2 and C3, no bleaching was observed, at 
least in our field observations (Fig. 1B, C). After 1 month, C1 
showed signs of recovery, as the paling regions had 
decreased (Fig. 1D) and then by January 2017 no white 
regions were observed (Fig. 1E). From 2019 to 2020, no 
bleaching was observed in any of the five colonies exam-
ined, including two that were newly tagged.

Historical observation of gonads
In 2017, vitellogenic oocytes were observed in all three 

colonies in May (Fig. 2A–C). Although we did not find marked 
differences in gonad structure between colonies, the aver-
age diameter of oocytes in C1 was 280.64 ±  4.75 μm 
(mean ±  SE; n =  34), which was significantly smaller than 
that in C2 (314.63 ±  7.21 μm; n =  39) and C3 (306.98 ±  7.15; 
n =  31) (P <  0.05, Steel–Dwass test). In June, the month of 
spawning, no mature gametes were observed in C2 or C3 
(Fig. 2E, F), but oocytes and sperm were observed in C1 
(Fig. 2D). There was no marked difference in gonad struc-
ture from May onward in C1, and the diameter of oocytes 
(288.54 ±  7.41 μm; n =  12) was not significantly different 

Fig. 2.  Representative sections of a gonad of Acropora tenuis in May (A–C), June (D–F), and July (G–I) 2017 stained with haematoxylin-
eosin. Photographs of the colonies tagged as C1 (Colony 1): (A, D, G), C2 (B, E, H), and C3 (C, F, I) and used for RNA-seq are shown. 
Arrowheads in (G) and (H) indicate immature oocytes. Oo, oocyte; Mf, mesentery filament; Sp, spermatozoa. Scale bar, 200 μm.

Fig. 3.  Multi-dimensional scaling plots for assessing the similarity 
of samples from three colonies (C1–C3) in May, June, and July. The 
distance between samples was based on Spearman’s rank correla-
tion coefficient (1 – rho), calculated from the number of reads mapped 
to the transcripts of a coral Acropora tenuis (A) and its symbiotic 
zooxanthellae Symbiodinium goreaui (B) from the Reefgenomics 
database (ReFuGe 2020 Consortium, 2015; Liew et al., 2016). Sym-
bol colors and shapes indicate colonies and months, respectively.
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from that in May (P >  0.05, t test). In July, no mature gam-
etes were observed in the three colonies, and a few imma-
ture oocytes were observed (Fig. 2G–I). In 2020, mature 
oocytes were observed in the samples collected from April 
to June, but not after July for any of the five colonies.

RNA-Seq analysis
After trimming of adapter sequences, 9–22 million reads 

were obtained for each sample, and approximately 80% 
were mapped to the A. tenuis or S. goreaui genome, although 
the proportions of reads mapped to A. tenuis and S. goreaui 
differed between samples (see Supplementary Figure S1 
and Table S4). As the number of reads that mapped to both 
A. tenuis and S. goreaui was very small compared to the 
total reads (approximately 0.031% of total reads; see Sup-

plementary Table S4), they were included in further analy-
ses for both A. tenuis and S. goreaui. Compared to A. tenuis 
and S. goreaui, fewer reads were mapped to the S. kawagutii 
genome (approximately 0.344% of total reads) (see Supple-
mentary Table S4). The results implied that S. goreaui was a 
major symbiont in the present study.

MDS plots based on gene expression similarity revealed 
that month and colony relationships could be explained in 
part by changes in gene expression in A. tenuis (Fig. 3A). In 
the MDS plot of A. tenuis, the differences in gene expression 
between colonies are shown on the vertical axis, and the 
differences between months are shown on the horizontal 
axis, except for a sample of C1 in May (C1-May), which was 
located closer to the June samples than C2-May and 
C3-May (Fig. 3A), indicating its transcriptomic similarity to 

Fig. 4.  Expression patterns of differentially expressed genes (DEGs) in a non-spawned colony (C1) and two spawned colonies (C2 and C3) 
of Acropora tenuis from May to July in 2017. DEGs in the comparison of colonies (A) Colony-DEGs, in the comparison of months in all three 
colonies (B) Month-DEGs, and in the comparison of months only in spawned colonies (C) Month-DEGs in spawned colonies, are shown. 
(A–C) Heatmaps of DEG expression and hierarchical clustering of gene expression data for the DEGs and samples. (D) Venn diagram of the 
number of DEGs between colonies, months in all colonies, and months in spawned colonies.
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the June samples. For the reads mapped to the S. goreaui 
genome, there was no clear trend in the relationships 
according to colonies or months (Fig. 3B). Therefore, it 
appeared that there were no marked changes in transcripts 
of symbiotic zooxanthellae according to host colony or sam-
pling month during this experimental period.

Expression patterns of DEGs
Expression analysis of A. tenuis revealed 2099 and 1017 

colony- and month-DEGs, respectively (Fig. 4, see also 
Supplementary Tables S5 and S6). The colony-DEGs 
showed varying patterns of up- and downregulation among 
colonies (Fig. 4A). The numbers of up- and downregulated 
colony-DEGs were similar among colonies (see Supplemen-
tary Figure S2A). By contrast, most month-DEGs were up- 
or downregulated in July (Fig. 4B, see also Supplementary 
Figure S2B), suggesting marked changes in gene expres-
sion after spawning. On the other hand, the May and June 
samples were included in one cluster on hierarchical cluster-
ing based on month-DEGs (Fig. 4B). As C1-May was located 
close to the June samples in the MDS plot, the difference 
between May and June could have been underestimated in 

the analysis including C1. To examine this possibility, month-
DEGs in spawned colonies (C2 and C3) were screened (Fig. 
4C). The results detected 1149 genes as month-DEGs in 
spawned colonies (see Supplementary Table S7), 787 of 
which were common to month-DEGs in all colonies (Fig. 
4D). The heatmap of month-DEGs in spawned colonies 
showed that, in most cases, their expression levels were 
markedly changed after spawning (Fig. 4C, and see Supple-
mentary Figure S2C). Therefore, the transcriptomic change 
after spawning was not an overestimation caused by a non-
spawning colony. In hierarchical clustering based on month-
DEGs in spawned colonies, the samples of spawned 
colonies (C2 and C3) formed three clusters that reflected 
month, and the difference between May and June, which 
was not reflected in month-DEGs (Fig. 4B), was also 
reflected (Fig. 4C). For the non-spawned colony, C1-June 
and C1-July were included in the June and July clusters, 
respectively. However, C1-May was located in the same 
cluster as the samples in June (Fig. 4C). This result indi-
cates that the transcriptomic condition in C1-May was not 
unique but was similar to those in June, even when focusing 
on the DEGs in the normally spawned colonies.

Fig. 5.  Expression profiles of Acropora tenuis genes related to gametogenesis (Vg1, Vg2, Vasa, Piwi), and apoptosis (BclWD, Bax, Bak, 
Casp-CARDa, Casp-CARDb) revealed by RNA-seq. The transcripts per kilobase million values of C1 (Colony-1), C2, and C3 are indicated 
by black, white, and grey squares, respectively. Asterisk (*) and dagger (†) indicate DEGs between months in the comparisons of all three 
colonies (C1–C3) and two spawned colonies (C2 and C3), respectively.
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qPCR validation of representative genes
Based on gene annotations and expression patterns in 

RNA-Seq, we selected the genes related to gametogenesis 
(Shikina et al., 2012, 2013; Tan et al., 2020, 2021) and apop-
tosis (Moya et al., 2016; Shikina et al., 2020) as representa-
tives for qPCR validation. With regard to the genes related to 
gametogenesis, we performed qPCR validation of Vg1, Vg2, 
Vasa, and Piwi (see Supplementary Table S2). For RNA-
Seq, Vg1 and Piwi were included as month-DEGs in the 
analyses of both all colonies and spawned colonies, while 
Vasa was included as a month-DEG in the analysis of 
spawned colonies. Although Vg2 was not a month-DEG, it 
was included in the analysis because it had a similar expres-
sion pattern to the other three genes. RNA-Seq analysis 
showed that their expression levels tended to be high before 
spawning (Fig. 5A–D). qPCR validated the RNA-Seq data in 
2017 (Fig. 6A–D). In C2 and C3, significant differences were 
detected for all four genes (P <  0.05, Dunn’s test). In C1, the 
expression patterns of these genes were different from 

those in C2 and C3, particularly for Vasa and Piwi in June, 
and there were no significant differences for Vg1, Vg2, or 
Vasa (P >  0.05, Kruskal–Wallis rank sum test). To evaluate 
the robustness of their expression patterns, we examined 
two additional colonies in 2020 over a longer period (Fig. 7). 
The expression of the four genes differed significantly from 
April to September (P <  0.05, Kruskal–Wallis rank sum test), 
but the expression levels of Vg2 and Vasa were not signifi-
cantly different among May, June, and July. Therefore, the 
expression patterns of these two genes were not consistent 
from May to July (Fig. 7A–D).

We also evaluated the expression of genes related to 
apoptosis. As its molecular basis has been established in 
another coral species, Acropora millepora, we used the 
gene names from this species (Moya et al., 2016). We 
selected BclWD, Bax, Bak, Casp-CARDa, and Casp-
CARDb (see Supplementary Table S2) as representative 
DEGs, because they were included among the month-DEGs 
in all colonies. RNA-Seq analysis showed that their expres-

Fig. 6.  Relative mRNA levels of genes related to gametogenesis (Vg1, Vg2, Vasa, Piwi), and apoptosis (BclWD, Bax, Bak, Casp-CARDa, 
Casp-CARDb) in three colonies (C1–C3) of Acropora tenuis from May to July in 2017. Total RNA was extracted from a single branch (3–4 cm) 
of each colony. The qPCR samples were different from those for RNA-Seq. n =  two–four. β-actin and ef1α were used as endogenous con-
trols. The mean values of three colonies in May were set at 1.0 for each gene, and the data are means ±  SE. The significance of differences 
between months was tested for each colony, and letters with no, single, and double quotations indicate the results of C1–C3, respectively. 
Months with different letters in each column were significantly different (Dunn’s test, P <  0.05).
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sion levels tended to increase after spawning (Fig. 5E–I), 
which was validated by qPCR. The expression levels of 
BclWD and Bax were significantly higher in July than in May 
and/or June in all three colonies (Fig. 6E, F). Bak expression 
increased from June to July, and differed significantly 
between June and July in C2 and C3, but not in C1 (Fig. 6G, 
P >  0.05, Kruskal–Wallis rank sum test). Casp-CARDa and 
Casp-CARDb expression levels were high in July, although 
the differences were not significant in one colony (Fig. 6H, I). 
The expression patterns of the five genes differed signifi-
cantly from April to September in 2020 (Fig. 7E–I, P <  0.05, 
Kruskal–Wallis rank sum test). Bak expression did not differ 
significantly among May, June, and July (P >  0.05, Kruskal–
Wallis rank sum test), suggesting that its expression was not 
consistent during this period (Fig. 7G).

DISCUSSION

Two of three colonies subjected to RNA-Seq analysis, 
C2 and C3, had no gametes in June 2017, whereas C1 did 
have gametes. In 2017, the majority of A. tenuis around 

Sesoko Island spawned on June 6th, 2 days before sam-
pling, and a few colonies spawned on June 8th, i.e., on the 
sampling day (Baird et al., 2021b). Hence, we cannot exclude 
the possibility that C1 spawned after sampling in June. On 
the other hand, the size of oocytes increased markedly 1 
month before spawning in Acropora corals even in the case 
of irregular spawning (Okubo et al., 2007; Tan et al., 2020). 
For C1, the size of oocytes did not increase from May to 
June, suggesting immaturity. Therefore, it is plausible that 
C1 did not spawn in 2017, resorbed its gametes between 
June and July, and used the energy to repair the bleaching 
that occurred in the previous year.

According to RNA-Seq analysis, the gene expression 
pattern in May in a non-spawning colony was similar to that 
in June. This suggested that the decision not to spawn had 
already been made in May, although the oocytes had already 
developed to some extent. As the oocyte size in the non-
spawned colony corresponded to that from late winter to 
early spring (Tan et al., 2020), maturation may have stopped 
during this period. There may be a checkpoint determining 

Fig. 7.  Relative mRNA levels of genes related to gametogenesis (Vg1, Vg2, Vasa, Piwi) and apoptosis (BclWD, Bax, Bak, Casp-CARDa, 
Casp-CARDb) in the five colonies of Acropora tenuis from April to September 2020. Total RNA was extracted from a single branch (3–4 cm) 
of each colony. n =  5. β-actin and ef1α were used as endogenous controls. The mean values in May were set at 1.0 for each gene, and the 
data are means ±  SE. Letters with and without quotation marks indicate the results for 3 months (May–July) and 6 months (April–September), 
respectively. Months with different letters in each column were significantly different (Dunn’s test, P <  0.05).
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spawning from late winter to early spring. Reallocation of 
energy from reproduction to growth has been investigated in 
detail in A. formosa (Okubo et al., 2005, 2007). When A. 
formosa was divided into fragments in November, the 
oocytes in the early vitellogenic stage were resorbed within 
2 months, whereas those in the late stage continued devel-
oping and finally spawned (Okubo et al., 2007). In this study, 
A. tenuis retained immature oocytes after bleaching until the 
spawning season. We could not determine the reason for 
this difference, although oocyte resorption cascades may 
differ according to the type of damage and/or between spe-
cies.

MDS plots based on gene expression similarity revealed 
by RNA-Seq analysis showed similarity of gene expression 
patterns between the non-spawning colony in May and all 
colonies in June based not only on analysis of all transcripts 
(Fig. 3A) and month-DEGs in all colonies (Fig. 4B) but also 
analysis of month-DEGs only in the spawned colonies (Fig. 
4C). These observations suggest that the transcriptomic 
condition in the non-spawned colony in May was advanced 
to June. However, it was difficult to identify biological pro-
cesses that were activated or inactivated specifically in the 
non-spawned colony in May. As corals are sessile organ-
isms, their transcriptome is likely strongly affected by the 
environment and optimized to the settlement location, as 
reflected in their environmentally induced morphological 
plasticity (Todd, 2008; Budd et al., 2012; Kitahara et al., 
2016). Therefore, we could not confirm whether the activa-
tion (or inactivation) of a biological process in C1 was due to 
non-spawning, its settlement location, or other factors. In 
fact, the number of colony-DEGs was approximately two-
fold greater than that of month-DEGs (Fig. 4). Further stud-
ies are needed to assess the allocation of energy from 
reproduction to growth.

The expression levels of genes related to gametogene-
sis and apoptosis were high before and after spawning, 
respectively, consistent with previous studies of coral spe-
cies (Shikina et al., 2012, 2013, 2020; Tan et al., 2020, 2021). 
It appears to be common for Acropora corals to possess two 
vitellogenin genes (Tan et al., 2021). In this study, the fluc-
tuation of Vg2 expression levels was moderate, particularly 
from May to September, in contrast to the marked decrease 
in Vg1 expression after spawning. In our previous study, Vg2 
expression decreased in October, and was still low in March; 
however, we lacked data for the winter months (Tan et al., 
2021). These seasonal differences in expression pattern 
suggest that the two vitellogenin genes play different roles in 
A. tenuis.

The relationship between apoptosis and reproduction 
has been investigated in a gonochoric stony coral, 
Fimbriaphyllia ancora (previously Euphyllia ancora). In F. 
ancora, the number of apoptotic cells in the gonadal somatic 
cell layer increased in the testes during the middle and late 
phases, and in the ovaries in the early and middle phases, of 
gonadal development. This was considered to contribute to 
structural adjustments of the gonads, and to facilitate the 
enlargement and subsequent release of gametes (Shikina et 
al., 2020). In this study, the expression levels of genes 
related to apoptosis were increased after spawning in A. 
tenuis. This may have been a result of apoptosis of gonadal 
somatic cells, accompanied by early ovary development, 

although this must be confirmed in future studies. It would be 
interesting to compare the physiological basis of gonadal 
development between gonochoric and hermaphroditic scler-
actinian corals.

In conclusion, the results of RNA-Seq analysis well 
reflected the temporal changes in the transcriptome in A. 
tenuis as shown in the MDS plot (Fig. 3A), and genes related 
to gametogenesis and to apoptosis were identified as repre-
sentative upregulated genes before and after spawning, 
respectively. The present study demonstrated the utility of 
assessing coral conditions based on transcriptome analysis. 
The next step should be to extend the experimental period to 
a whole year because oogenesis is an annual event in A. 
tenuis (Tan et al., 2020). Continuous sampling of the same 
colonies in such studies would be ideal, because we found 
that the results of RNA-Seq analysis also reflected differ-
ences between colonies.
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