	Nem <mark>XXXX</mark>
,	
	Sachsia putridicola n. sp. (Rhabditida: Diplogastridae), isolated from
	an <i>Onthophagus</i> dung beetle (Coleoptera: Scarabaeidae) from
	Tsukuba, Japan
	Natsumi KANZAKI ^{1,*} and Yousuke DEGAWA ²
)	¹ Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI),
	Kyoto, Kyoto 612-0855, Japan
	² Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278
	-294 Sugadairakogen, Ueda, Nagano 386-2204, Japan
	ORCID iD: Kanzaki: 0000-0001-8752-1674; Degawa: 0000-0002-5955-1187
	Received: XXXX; revised: XXXX
	Accepted for publication: XXXX
)	*Corresponding author, <u>nkanzaki@ffpri.affrc.go.jp</u> / natsumikanzaki@hotmail.com

20 Summary – An undescribed *Sachsia* species (Diplogastridae) was isolated from a dung 21 beetle, Onthophagus sp. cf. atripennis, and the species is described here as Sachsia 22 *putridicola* n. sp. The new species is characterised by its cheilostom; anterior part 23 forming a cuticular ring; posterior part in the form of a thin-walled tube; anisotopic 24 gymnostom; metastegostom with dorsal small tooth and no subventral armature; and 25 setiform male genital papillae with the arrangement <v1d, v2, v3/v4, ad, ph, v5-7, pd>. 26 Sachsia putridicola n. sp. is typologically similar to two previously described 27 congeners, Sachsia zurstrasseni and Sachsia postpapillata, but can be readily 28 distinguished by its anisotopic gymnostom (vs isotopic gymnostom in the two nominal 29 species) and the direction of the anterior three pairs of genital papillae, which are 30 directed sublaterally in the new species (vs second or third pair directed sublaterally in 31 S. zurstrasseni and S. postpapillata, respectively). Phylogenetically, the new species is 32 close to Eudiplogasterium evidentum, not S. zurstrasseni. Based on the typological and 33 phylogenetic characters, the status of *S. zurstrasseni* is discussed. 34 35 Keywords – dung beetle, morphology, morphometrics, new species, phylogeny,

- 36 taxonomy.
- 37

38	Nematodes are associated with many different groups of insects as parasites,
39	parasitoids, pathogens and phoretic associates. Among these host/carrier species, dung
40	and carcass-associated beetles have many characteristic nematodes, which are possibly
41	adapted to nutrient-rich and quickly decomposed substrates (environments), such as an
42	aphelenchoidid endoparasite, Peraphelenchus Wacheck, 1955 (Wacheck, 1955;
43	Kanzaki et al., 2013), three-gendered rhabditids, Auanema Kanzaki, Kiontke, Tanaka,
44	Hirooka, Schwarz, Müller-Reichert, Chaudhuri & Pires da Silva, 2017, three-gendered
45	viviparous rhabditids, Tokorhabditis Kanzaki, Yamashita, Lee, Shih, Ragsdale &
46	Shinya, 2021 (Kanzaki et al., 2017a, 2021; Ragsdale et al., 2022), viviparous
47	diplogastrid, Sudhausia Herrmann, Ragsdale, Kanzaki & Sommer, 2013 (Herrmann et
48	al., 2013; Kanzaki et al., 2017b), and several predators, including Mononchoides Rahm,
49	1928 and Fictor Paramonov, 1952 (Mahboob & Tahseen, 2022; Mahboob et al., 2022)
50	and a characteristic omnivore, Onthodiplogaster Kanzaki, Ikeda & Shinya, 2023
51	(Kanzaki et al., 2023). In addition, mutualistic relations between the dung beetle
52	Onthophagus taurus (Schreber, 1759) and its associated nematodes have been
53	recognised (Ledón-Rettig et al., 2018).
54	During a field survey of dung- and carcass-associated nematodes, an
55	undescribed species of Sachsia Meyl, 1960 was isolated from Onthophagus sp. cf.
56	atripennis (Coleoptera: Scarabaeidae).
57	Here, the newly isolated Sachsia species is described and illustrated as Sachsia
58	putridicola n. sp. based on its typological characters and molecular sequence profile. In
59	addition, the taxonomic status of the genus is discussed.
60	

61 Materials and methods

62

63

NEMATODE COLLECTION AND CULTURE

64

65 Six adult *Onthophagus* spp. (not identified at the species level, but seemingly 66 Onthophagus atripennis Waterhouse) were collected from rotten mushrooms (Boletus 67 reticulatus Schaeff.) from the campus of the University of Tsukuba in Ibaraki, Japan, on 68 7 July 2021. The beetles were dissected individually on water agar (2.0% agar without 69 nutrients). The dissected beetles were kept in the laboratory (approximately 25°C) and 70 observed occasionally for 1 month. Propagated nematodes were observed under a 71 dissecting microscope (S8 Apo; Leica Microsystems, Wetzlar, Germany) to determine 72 their feeding habits and transferred to appropriate medium (NGM seeded with 73 Escherichia coli strain OP50). Successfully propagated nematodes were subcultured 74 and further identified based on typological characters using a compound microscope 75 (Eclipse Ni; Nikon, Tokyo, Japan) with differential interference contrast optics. 76 77 LIGHT MICROSCOPIC OBSERVATION AND PREPARATION OF TYPE SPECIMENS 78

Adult nematodes were collected from two-week-old cultures, after which they were heat-killed and fixed in TAF (triethanolamine:formalin:distilled water = 2:7:91) for one week. Fixed material was processed to glycerin using a modified Seinhorst's method (Minagawa & Mizukubo, 1994) and mounted in glycerin according to the methods of de Maeseneer & d'Herde (1963). Mounted specimens were used for morphometrics and kept as type material. In addition, live adults from two-week-old cultures were used for detailed morphological observations following the methods of Kanzaki (2013). All micrographs were obtained using a digital camera system (MC170
HD; Leica, Wetzlar, Germany) and morphological drawings were made using a drawing
tube connected to the microscope.

89

90 MOLECULAR PROFILES AND PHYLOGENETIC STATUS

91

92 Several adult individuals were hand-picked from a culture (see above), and 93 transferred to nematode lysis solution (Kikuchi et al., 2009; Tanaka et al., 2012) 94 individually for DNA extraction. These nematodes were digested at 55°C for 20 min., 95 and the lysates served as PCR template DNA. First, the materials were individually 96 amplified and sequenced for their D2-D3 expansion segments of the large subunit of 97 ribosomal RNA (D2-D3 LSU) according to Ye et al. (2007) to confirm their species 98 identity. Thereafter, ca 4 kb of ribosomal RNA region including near-full-length small 99 subunit (SSU: ca 1.7 kb), internal transcribed spacer region (ITS: ca 0.9 kb) and D1-D4 100 expansion segments of the large subunit (D1-D4 LSU: ca 1.4 kb) were determined 101 following the methodology by Ekino et al. (2017) and Kanzaki et al. (2019). In 102 addition, partial code of mitochondrial cytochrome oxidase subunit I (mtCOI: 660 bps) 103 was determined following the methodology by Kanzaki & Futai (2002). The sequences 104 of the new species were deposited in the GenBank database with accession numbers 105 LC773616 (rDNA) and LC773617 (mtCOI). 106 The SSU and D2-D3 LSU were employed for combined molecular phylogenetic 107 analysis. First, both sequences were compared with those deposited in the database 108 using BLAST homology search program 109 (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE TYPE=BlastSearc

110	h&LINK_LOC=blasthome). According to the BLAST results and previous publications
111	(Gonzalez et al., 2021; Kanzaki et al., 2023), sequences to be used in phylogenetic
112	analyses were retrieved from the database. The selected sequences were summarized in
113	Suppl. Table S1.
114	The sequences of each dataset were aligned using MAFFT (Katoh et al., 2002;
115	Kuraku et al., 2013: available online at http://align.bmr.kyushu-u.ac.jp/mafft/software/).
116	The substitution model and parameters were determined by MEGA 7 (Kumar et al.,
117	2016) for each locus, and the Bayesian phylogenetic analysis was conducted with
118	MrBayes 3.2 (Huelsenbeck & Ronquist, 2001; Ronquist et al., 2012); four chains were
119	run for 4×10^6 generations. Markov chains were sampled at intervals of 100 generations
120	(Larget & Simon, 1999). Two independent runs were performed, and, after confirming
121	the convergence of runs and discarding the first 2×10^6 generations as burn-in, the
122	remaining topologies were used to generate a 50% majority-rule consensus tree.
123	
124	Results
125	
126	NEMATODE ISOLATION
127	
128	Tokorhabditis atripennis Ragsdale, Kanzaki, Yamashita & Shinya, 2022 was
129	isolated from all dissected individuals, while S. putridicola n. sp. was found from one
130	individual beetle.
131	
132	Phylogenetic status
133	

134	Phylogenetic relationship among diplogastrid nematodes including the new
135	species is shown in Fig. 1 and Suppl. Figs S1 and S2. Sachsia putridicola n. sp.
136	belonged to a subclade of Diplogastridae with Cutidiplogaster Fürst von Lieven, Uni,
137	Ueda, Barbuto & Bain, 2011, Eudiplogasterium Meyl, 1960, Mononchoides Rahm,
138	1928, Neodiplogaster Cobb, 1924, Onthodiplogaster Kanzaki, Ikeda & Shinya, 2023,
139	Paroigolaimella Paramonov, 1952, Sachsia, and Tylopharynx de Man, 1876, and close
140	to Eudiplogasterium and Paroigolaimella. However, the new species did not form a
141	clade with its congener, S. zurstrasseni (Sachs, 1950) Meyl, 1960, i.e., the new species
142	formed a well-supported (100% posterior probability) clade with E. levidentum
143	(Weingärtner, 1955) Meyl, 1960, with S. zurstrasseni being closer to Paroigolaimella
144	spp.
145	
146	Sachsia putridicola n. sp.
147	(Figs 2-6)
148	
149	MEASUREMENTS
150	
151	See Table 1.
152	
153	DESCRIPTION
154	
155	Aduls
156	

157 Medium to small species in the family, *i.e.*, 486-607 and 575-746 µm in male 158 and female, respectively. Body cylindrical, relatively stout. Cuticle thick, with fine 159 annulation and clear longitudinal striations where dot-like and chain-like patterns can be 160 observed in different focal planes. Lateral field weakly developed, sometimes difficult 161 to distinguish from striations, but can be distinguished with lack of annulation, 162 seemingly composed by two separate bands, *i.e.*, four lines were observed. Six equal-163 sized lip sectors not clearly separated from each other, forming a dome-shape, without 164 clear constriction, *i.e.*, lip part continuous with body contour. Six short, setiform labial 165 sensilla present in male and female, and four long, setiform cephalic papillae present in 166 male. Amphid large, inverted triangular, located at the level of the posterior end of 167 cheilostom. Stomatal dimorphism not observed. Stoma separated into three sections, 168 cheilo-, gymno- and stegostom. Cheilostom forming a short tube; anterior part forming a ring at the stomatal opening which is seemingly separated into six or 12 sections, but 169 170 the separation was weakly observed only in live materials, and not clearly observed in 171 fixed or glycerin material; posterior part short tube with thin and rather flexible wall. 172 Gymnostom forming thick-walled short tube, internally overlapping with cheilostom; 173 anisotopic, *i.e.*, dorsal side is about half of ventral side in length (depth); separated into 174 two (anterior and posterior) subsections each derived from different arcade syncytia, but 175 the margin was observed weakly in live materials. Stegostom separated into three 176 subsections, pro-meso-, meta- and telostegostom. Pro-mesostegostom not developed, 177 not clearly cuticularized, internally overlapping with gymnostom. Metastegostom with a 178 small dorsal tooth on a mound; no tooth, ridge or denticule was observed on subventral 179 sectors, but the sectors forming (surrounded by) slightly sclerotized ring. Stegostom not 180 well-developed; funnel-shaped, connecting metastegostom and pharynx. Although the

181 dorsal pharyngeal gland was observed, the gland orifice was not clearly observed. 182 Anterior part of pharynx (= pro- and metacorpus) and posterior pharynx (isthmus and 183 basal bulb) almost same in length. Procorpus muscular tube without conspicuous 184 internal lining, occupying about 1/3 of corresponding body diam. Metacorpus muscular, 185 forming weakly-developed and somewhat roundish rectangular median bulb. Isthmus 186 narrow, not muscular. Basal bulb glandular. Pharyngo-intestinal junction clearly 187 observed, well developed. Nerve ring usually surrounding posterior part of isthmus. 188 Secretory-excretory pore visible, but not conspicuous, ventrally located at 1/2 body 189 diam. posterior to basal bulb. Deirids observed laterally, at the level of one body diam. 190 posterior to secretory-excretory pore. Postdeirid present, on latero-dorsal side of the 191 body, and the position will be described for male and female separately. Lateral glands 192 not observed.

193

194 *Male*

195

196 Body weakly ventrally arcuate, strongly ventrally curved at tail region when 197 killed by heat. Testis single, on the right ventral of intestine, anterior part reflexed to 198 right side. Spermatogonia arranged in multiple (three to five) rows in reflexed part, then 199 well-developed spermatocytes arranged as multiple (one to three) rows in anterior two-200 thirds of main branch, then mature amoeboid spermatids arranged in multiple rows in 201 remaining, proximal part of gonad. Vas deferens occupying about 1/3 of total gonad 202 length. Posterior end of gonad (= posterior end of vas deferens) and intestine fused to 203 form a cloacal tube. Postdeirid around the anterior end of vas deferens. Spicules paired, 204 separate. Spicules straight to smoothly curved in ventral view, adjacent to each other in

205 distal end, *i.e.*, arranged in 'V'-shape. Spicule in lateral view smoothly ventrally 206 arcuate, rounded to roundish squared manubrium present at anterior end; anterior 2/5 of 207 lamina/calomus complex with smooth and obvious ventral expansion, then smoothly 208 tapering to bluntly pointed distal end. Gubernaculum conspicuous, about half of spicule 209 in length, bow to low keel-shaped with a manubrium at the anterior end; posterior end 210 dorsally covering spicules. Dorsal side of gubernaculum well sclerotised. Tail conical, 211 with a sharply pointed spike occupying about half of whole tail length. Nine pairs of 212 setiform genital papillae and a papilliform ventral single papilla present. Ventral single 213 papilla (vs) on anterior cloacal lip. Paired genital papillae and a pair of phasmids 214 arranged as <v1d, v2, v3 / v4, ph, ad, v5-v7, pd> in the terminology of Sudhaus and 215 Fürst von Lieven (2003), where sublateral v1d ca 1 cloacal body diam. (CBD) anterior 216 to cloacal opening (CO); subventrally located v2 and v3 close to each other, and at the 217 half way between CO and v1d; subventral v4 about 1/3 CBD posterior to CO; phasmid 218 (ph) laterally located at 1/2 CBD posterior to CO; sublaterally located ad ca 1 CBD 219 posterior to CO; v5-v7 forming triplet, and the central one (v6) slightly more ventrally 220 located, and longer than the other two; subdorsally directed pd located at level of or 221 slightly posterior to v7. Anterior five pairs (v1-ad) almost equal in size, rather long and 222 conspicuous; v5 and v7 very small; and v6 and pd small but larger than v5 and v7, *i.e.*, 223 intermediate between anterior pairs and v5/v7. Bursa or bursal flap absent. 224 225 Female

223 Fe

226

Slightly and smoothly arcuate ventrally or straight when killed by heat. Gonaddidelphic, amphidelphic. Each genital system arranged from vulva/vagina as uterus,

229 spermatheca, oviduct, connection tissue and ovary; where uterus to ovary form a single 230 tube. Because anterior and posterior gonads are structurally identical, and symmetry to 231 each other, *i.e.*, anterior and posterior gonads extend on the right and left of intestine, 232 only anterior gonad is described here from Vagina/vulva to ovary. Vagina pore-like in 233 ventral view, without any flap apparatus. Vagina perpendicular to body wall, 234 surrounded by sclerotised tissue. Vulval muscle forming X-shape in ventral view, 235 relatively conspicuous. Four vaginal glands visible overlapping with vulval muscle. 236 Uterus to connection tissue extending ventrally and anteriorly on right of intestine and 237 with a totally reflexed (= antidromous reflexion) ovary extending dorsally. Uterus thick-238 walled. Middle part of main gonad branch functions as spermatheca where well-239 developed sperm often present; composed by large rounded-flattened cells. Oviduct 240 simple tube between spermatheca and connection tissue. Connection tissue consisting of oval-shaped cells, somewhat crustaformeria-like, connecting ovary and oviduct. 241 242 Oocytes mostly arranged in multiple (two to five) rows in distal half, and well-243 developed oocytes arranged in single row, where the most developed (anterior) oocyte 244 appears darker and more glandular than the other oocytes. Postdeirid at the level of the 245 reflection of posterior gonad. Rectum ca 1 anal body diam. (ABD) long, intestinal-rectal 246 junction surrounded by well-developed sphincter muscle. Three rectal glands, two 247 ventral and one dorsal, present. Anus in form of dome-shaped slit, posterior anal lip 248 slightly protuberant. Phasmid conspicuous, located about half (1/3-2/3) ABD posterior 249 to anus. Tail smoothly tapering or slightly elongate conical, with pointed and elongate 250 terminus.

251

252 TYPE HABITAT AND LOCALITY

253	

254	The new species was isolated from an adult of Onthophagus sp. cf. atripennis
255	collected on 7 July, 2021 from a rotten Boletus reticulatus in the campus of the
256	University of Tsukuba (36° 06' 26" N, 140° 06' 10" E, 25 m a.s.l.).
257	
258	OTHER HABITATS AND LOCALITIES
259	
260	The new species was previously isolated from a dissected body of Creophilus
261	maxillosus (L.) (Staphylinidae) collected with a rotten meat trap in the Chiyoda
262	Experimental Nursery of Forestry and Forest Products Research Institute (36° 11' 00"
263	N, 140° 13' 04" E, 37 m a.s.l.) in June, 2015, but the culture was lost before the
264	collection of taxonomic materials (Kanzaki, Unpubl. Obs.)
265	
266	Etymology
267	
268	The species epithet <i>putridicola</i> is derived from the Latin words <i>putridium</i> (=
269	rotten) + <i>cola</i> (= dwelling) because of the habitat of the new species, <i>i.e.</i> , rotten
270	substrates (rotten mushroom and rotten meat).
271	
272	TYPE MATERIAL
273	
274	Type specimens include a holotype male, nine paratype males, and 10 paratype
275	females were deposited as follows: the holotype male (Collection ID: T-797t), four
276	paratype males (T-7893p to T-7896p), and five paratype females (T-7897p to T-7901)

277	in the USDA Nematode Collection (USDANC), Beltsville, Maryland; five paratype
278	males (Sachsia putridicola M01-05) and five paratype females (Sachsia putridicola
279	F01-05) in the Forest Pathology laboratory collection in FFPRI, Tsukuba, Japan. In
280	addition, several mounted and unmounted specimens of males and females were
281	deposited in the Kansai Research Center, FFPRI.
างา	

282

- 283 **DIAGNOSIS AND RELATIONSHIPS**
- 284

285 Sachsia currently contains two species, S. zurstrasseni and S. postpapillata 286 Mumtaz & Ahmad, 2019. The new species is distinguished from S. postpapillata by its 287 stouter body reflected to a values of males reflected to a values, 15.1 (12.7-19.0) vs 23.4 288 (22.6-24.9) and females 13.2 (11.8-14.0) vs 20.8 (19.9-21.6); stomatal structure, i.e., 289 although the detailed structure of cheilostom is not described, the shape of gymnostom 290 seems different as anisotopic vs isotopic; arrangement of male genital papillae, <v1d, 291 v2, v3 / v4, ph, ad, v5-v7, pd> vs < v1, v2, v3d / v4, ph, ad, v5-v7, pd>, *i.e.*, the 292 sublaterally located pair comes to first (v1d) vs third (v3d); and somewhat shorter (not 293 clearly filiform) female tail which is reflected to c' values, 6.2 (4.8-7.7) vs 10.2 (9.3-294 11.0) (Mumtaz & Ahmad, 2019). In addition, several other morphometric values could 295 be applied to distinguish the new species from S. postpapillata (Mumtaz & Ahmad, 296 2019). However, the values for S. postpapillata had been calculated from relatively 297 small number of materials (four males and five females), the values are expected to 298 have wider range, and thus, are not mentioned in detail herein. 299 Based upon stomatal structure, S. putridicola n. sp. is seemingly closer to S. 300 zurstrasseni, i.e., although the detailed structure is not described in the text, Sachs

301	(1950) drew a ring-like anterior part and thin-walled posterior part of cheilostom for S .
302	zurstrasseni. However, S. putridicola n. sp. can be distinguished from S. zurstrasseni its
303	gymnostomatal shape, anisotopic vs somewhat isotopic; arrangement of male genital
304	papillae, <v1d, ad,="" pd="" ph,="" v2,="" v3="" v4,="" v5-v7,=""><i>vs</i> <v1, ad,="" pd="" v2d,="" v3="" v4,="" v5-v7,=""></v1,></v1d,>
305	(phasmid is not drawn in Sachs (1950)), <i>i.e.</i> , the sublaterally located pair comes to first
306	(v1d) vs second (v2d); and position of female phasmid, approximately half ABD vs
307	more than 1 ABD posterior to anus (Sachs, 1950).
308	Phylogenetically, the new species is clearly separate from S. zurstrasseni as
309	reported in Susoy et al. (2015) (Fig. 1, Suppl. Figs, S1, S2). However, the species could
310	belong to different undescribed genus, and further comments are given below.
311	
312	ADDITIONAL REMARKS
313	
314	Both in the present and previous isolations, S. putridicola n. sp. could be
315	cultured using common methods on NGM seeded with E. coli OP50. However, in both
316	cases, the nematode did not propagate well, and the culture lasted for less than 1 year in
317	our laboratory. Therefore, although the culture could last longer with careful subculture,
318	the habitat (humidity and/or pH conditions) and food microbe preferences of the
319	nematode are thought to be specific to their natural habitats. Similar difficulty in
320	culturing has been reported in the rhabditid Onthophagus associate, Tokorhabditis tauri
321	(Ragsdale et al., 2022). This suggests that the new species could be useful for studies of

- 322 the adaptation of nematodes to environments and food sources, and further efforts to
- 323 reisolate and establish a stable culture of this species are therefore necessary.
- 324

Discussion

- 327 GENERIC CHARACTERS OF SACHSIA

329	The genus Sachsia was originally established by Meyl (1960) with Sachsia
330	zurstrasseni as the type species. Thereafter, Sudhaus & Fürst von Lieven (2003)
331	organised the diplogastrid genera and retained Sachsia as a monotypic genus.
332	Diplogastrid genera are usually characterised mainly by the stomatal structure and male
333	and female tail characters, and several genera (or clade)-specific apomorphies have been
334	discussed, such as the presence of kidney-shaped receptaculum seminis in Acrostichus
335	Rahm, 1928 (Sudhaus & Fürst von Lieven, 2003). Sudhaus & Fürst von Lieven (2003)
336	typologically characterised Sachsia as follows: conspicuous cuticular ornamentation;
337	bipartite buccal cavity (stoma); stegostom with dorsal thorn-like tooth; female gonad
338	amphidelphic; gubernaculum resembles a narrow slightly bent strut; and tail short in
339	both sexes.
340	Comparison of these characters in three Sachsia spp. indicated that the generic
341	characters can be emended as follows (Sachs, 1950; Sudhaus & Fürst von Lieven, 2003;
342	Mumtaz & Ahmad, 2019):
343	1) conspicuous cuticular ornamentation
344	2) bipartite buccal cavity (stoma)
345	3) stegostom with dorsal thorn-like tooth
346	4) female gonad amphidelphic
347	5) gubernaculum resembles a narrow slightly bent strut

The tail is relatively short in *S. zurstrasseni* and *S. putridicola* n. sp., but *S. postpapillata* has a filiform female tail and long spike (appendage) in males. Therefore, the tail shape is omitted from the characters. In addition, the arrangement of genital papillae is often identical among close relatives or within the genus. However, in the present study, the arrangement was confirmed to be different among the three species and it was not included as a generic character.

Among these characters, 1), 2) and 4) are often found in the other diplogastrids (Sudhaus & Fürst von Lieven, 2003); therefore 3) and 5), could be the most important characters.

357 In the present study, stomatal composition was used as a diagnostic character, *i.e.*, the gymnostom is anisotopic in the new species but somewhat isotopic in the other 358 359 two species. In addition, cheilostomatal structure was somewhat different among these three species. Although the detailed structure has not been described for S. 360 361 postpapillata, the ring-like anterior part found in the other two species was not 362 confirmed in S. postpapillata (Sachs, 1950; Mumtaz & Ahmad, 2019), and the posterior 363 part of the cheilostom was thinner in S. putridicola n. sp. This type of variation has been 364 found in Pristionchus Kreis, 1932, i.e., P. elegans Kanzaki, Ragsdale, Herrmann & 365 Sommer, 2012 and its close relatives have membrane-like thin cheilostomatal plates, 366 while others have thick plates (Kanzaki et al., 2012). On the other hand, variation in the 367 gymnostom is not commonly seen within a genus. Compared with these variabilities, 368 the structure in the stegostom seems common among the three species considered here, 369 *i.e.*, a small dorsal tooth on the dorsal metastegostomatal mound and no tooth, denticle 370 or ridge present on the subventral side. The nematodes in this clade usually have 371 sclerotised cuticular structure(s) on the subventral sides (Sudhaus & Fürst von Lieven,

372 2003; Susoy *et al.*, 2015), and secondary loss of the subventral armature could be an
373 important apomorphy of the genus.

374	The other important character, the somewhat flattened shape of the
375	gubernaculum, is also not commonly known in diplogastrids. However, the
376	gubernaculum morphology is sometimes difficult to evaluate, except in some
377	characteristic cases such as the highly complex and/or massive gubernaculum reported
378	in Acrostichus (Kanzaki et al., 2020). Therefore, further studies of the characters based
379	on good specimens of more species are required.
380	In addition to the abovementioned characters, the three currently known Sachsia
381	spp. commonly have setiform sensillae and papillae, and large amphids (Sachs, 1950;
382	Mumtaz & Ahmad, 2019). These characters are often found in aquatic species such as
383	the Striata group of Allodiplogaster Paramonov & Sobolev in Skrjabin, Shikobalova,
384	Sobolev, Paramonov & Sudarikov, 1954 (Kanzaki et al., 2014), and those inhabiting
385	humid and nutrition-rich environments including Butlerius Goodey, 1929 and
386	Onthodiplogaster (Susoy et al., 2015; Girgan et al., 2021; Kanzaki et al., 2023).
387	Therefore, these characters may represent adaptations to their habitat, <i>i.e.</i> , may be
388	specific to the intrageneric group sharing the same habitat, and could be added to the
389	generic characters as follows:
390	6) Long and setiform labial and cephalic sensillae
391	7) Long and setiform genital papillae
392	
393	REMARKS ON GENERIC AND SPECIES STATUS OF SACHSIA ZURSTRASSENI
394	

395 In a previous study, a species isolated from manure/humus environment was 396 identified as S. zurstrasseni (by N. Kanzaki, the author of the present study) because of 397 its typological similarity and isolation source, *i.e.*, S. zurstrassen was originally isolated 398 from manure (cow dung) in southern Germany (Sachs, 1950), and molecular sequence 399 profiles were given for the species (Susoy et al., 2015). In the present study, however, S. 400 putridicola n. sp. did not form a clade with S. zurstrasseni, and the morphological 401 characters of the previous (Sachs, 1950) and new (Susoy et al., 2015) isolates were 402 therefore compared based on available information, *i.e.*, only morphological drawings 403 and a micrograph of the stomatal part are available for the new isolate (Ragsdale, 2015; 404 Susoy et al., 2015). The stomatal compositions of these two isolates are similar to each 405 other; typically, in metastegostom, both have only a dorsal tooth and no armature is 406 found in the subventral sectors. However, the forms of labial and cephalic sensillae are 407 different, *i.e.*, setiform and papilliform in the previous and new isolate, respectively 408 (Sachs, 1950; Ragsdale, 2015; Susoy et al., 2015). The cheilostomatal shape is slightly 409 different, clearly narrowing anteriorly in the new isolate and weakly anteriorly tapering 410 tube-like in the previous isolate (Sachs, 1950; Ragsdale, 2015; Susoy et al., 2015). In 411 addition, the extent of overlap of chailostom and gymnostom is greater in the new 412 isolate; and the width-depth ratio of stoma, deeper than diameter in the original isolate, 413 but the diameter is larger than the depth in the new isolate (Sachs, 1950; Andrássy, 414 1984; Ragsdale, 2015; Susoy et al., 2015). 415 Phylogenetically, new species did not form well-supported clade with new 416 isolate of 'S. zurstrasseni' (Fig. 1, Suppl. Figs S1, S2). Comparing with the previous 417 study, the phylogenetic tree topology is a little different, *i.e.*, in a subtree, *T. foetida* is

418 located to be basal position, subsequently *P. stresemanni* and *E. levidentum* branched

419	out, and <i>P. micrura</i> and 'S. zurstrasseni' form a well-supported derived clade in Susoy
420	et al. (2015). On the other hands, in the present study, although the position of T. foetida
421	is consistent to Susoy et al. (2015), the others are separated into two clade, two
422	Paroigolaimella spp. + 'S. zurstrasseni' and S. putridicola n. sp. + E. levidentum (Fig.
423	1, Suppl. Figs S1, S2). We consider the difference between these two analyses is
424	derived from the number of available sequences to be compared, <i>i.e.</i> , the phylogeny was
425	constructed based on multiple genes obtained from draft genome sequences, and only
426	SSU and D2-D3 LSU were available for new species. However, considering the PP
427	values (100%) for these clades in the present study, S. putridicola n. sp. is clearly
428	separated from 'S. zurstrasseni' as different genus.
429	Therefore, the new isolate of 'S. zurstrasseni' is assumed to be an undescribed
430	genus sharing similar typological characters with Sachsia. For this species, reisolation
431	and detailed typological observation are necessary to describe it as a new genus.
432	
433	Acknowledgments
434	
435	We sincerely thank Ms. Yoshiko Shimada (Kansai Research Center, FFPRI) for
436	her technical assistance in culturing and morphometric analysis. The field survey in the
437	present study was carried out as a part of field course, "Biology and Ecology of model
438	organisms" in the University of Tsukuba, and the authors sincerely thank the
439	participants and staffs of the course for their assistances for the material collection. This
440	study was funded the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid
441	for Scientific Research (B) (grants 20H03026 and 22H02690 to N.K.).
442	

References

445	Cobb, N.A. (1924). Neodiplogaster tropica n. g. (?) n. sp. Journal of Parasitology 11,
446	105. https://www.jstor.org/stable/3270868
447	de Man, J.G. (1876). Onderzoekingen over vrij in de aarde levende Nematoden.
448	Tijdschrift der Nederlandsche Dierkundige Vereenigning 2, 78-196, pls. 3-13.
449	Ekino, T., Yoshiga, T., Takeuchi-Kaneko, Y. & Kanzaki, N. (2017). Transmission
450	electron microscopic observation of body cuticle structures of phoretic and
451	parasitic stages of Parasitaphelenchinae nematodes. PLoS ONE 12, e0179465.
452	DOI: 10.1371/journal.pone.0179465
453	Fürst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. (2011). Cutidiplogaster
454	manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West
455	Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology 13,
456	51-59. DOI: 10.1163/138855410X500082
457	Girgan, C., Du Preez, G., Fourie, H. & Rashidifard, M. (2021). Morphological and
458	molecular characterization of Butlerius butleri Goodey, 1929 (Nematoda:
459	Diplogastridae) from South Africa: First report. Journal of Nematology 53,
460	e2021-26. DOI: 10.21307/jofnem-2021-026
461	Gonzalez, R., Kanzaki, N., Beck, C., Kern, W.H. & Giblin-Davis, R.M. (2021).
462	Nematode epibionts on skin of the Florida manatee, Trichechus manatus
463	latirostris. Scientific Reports 11:1211. DOI: 10.1038/s41598-020-79879-7
464	Goodey, T. (1929). On some new and little-known free-living nematodes. Journal of
465	Helminthology 7, 27-62. DOI: 10.1017/S0022149X0001871X

466	Herrmann, M., Ragsdale, E.J., Kanzaki, N. & Sommer, R.J. (2013). Sudhausia
467	aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae):
468	viviparous new species with precocious gonad development. Nematology 15,
469	1001-1020.
470	Huelsenbeck, J.P. & Ronquist, F. (2001). MR BAYES: Bayesian inference of
471	phylogenetic trees. Bioinformatics 17, 1754-1755. DOI:
472	10.1093/bioinformatics/17.8.754
473	Kanzaki, N. (2013). Simple methods for morphological observation of nematodes.
474	Nematological Research 43, 15-17. DOI: 10.3725/jjn.43.15
475	Kanzaki, N. & Futai, K. (2002). A PCR primer set for determination of phylogenetic
476	relationships of Bursaphelenchus species within xylophilus group. Nematology 4,
477	35-41. DOI: 10.1163/156854102760082186
478	Kanzaki, N., Ragsdale, E.J., Herrmann, M. & Sommer, R.J. (2012). Two new species of
479	Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and
480	La Réunion Island and P. elegans n. sp. from Japan. Journal of Nematology 44,
481	80-91. PMID: 23483847
482	Kanzaki, N., Tanaka, R. Ikeda, H., Taki, H., Sugiura, S. & Matsumoto, K. (2013).
483	Phylogenetic status of and insect parasitism in the subfamily Entaphelenchinae
484	Nickle with description of Peraphelenchus orientalis n. sp. (Tylenchomorpha:
485	Aphelenchoididae). Journal of Parasitology 99, 639-649. DOI: 10.1645/12-118.1
486	Kanzaki, N., Ragsdale, E.J. & Giblin-Davis, R.M. (2014). Revision of the paraphyletic
487	genus Koerneria Meyl, 1960 and resurrection of two other genera of
488	Diplogastridae (Nematoda). Zookeys 442, 17-30. DOI: 10.3897/zookeys.442.7459

489	Kanzaki, N., Kiontke, K., Tanaka, R., Hirooka, Y., Schwarz, A., Müller-Reichert, T.,
490	Chaudhuri, J. & Pires da Silva, A. (2017a). Description of two three-gendered
491	nematode species in the new genus Auanema (Rhabditina) that are models for
492	reproductive mode evolution. Scientific Reports 7, 11135. DOI: 10.1038/s41598-
493	017-09871-1
494	Kanzaki, N., Giblin-Davis, R.M., Gonzalez, R., Wood, L.A. & Kaufman, P.E. (2017b).
495	Sudhausia floridensis n. sp. (Nematoda: Diplogastridae) isolated from
496	Onthophagus tuberculifrons (Coleoptera: Scarabaeidae) from Florida, USA.
497	Nematology 19, 575-586. DOI: 10.1163/15685411-00003071
498	Kanzaki, N., Masuya, H., Ichihara, Y., Maehara, N., Aikawa, T., Ekino, T. & Ide, T.
499	(2019). Bursaphelenchus carpini n. sp., B. laciniatae n. sp. and B. cryphali
500	okhotskensis n. subsp. (Nematoda: Aphelenchoididae) isolated from Japan.
501	Nematology 21, 361-388. DOI 10.1163/15685411-00003220
502	Kanzaki, N., Liang, WR., Chiu, CI. & Li, HF. (2020). Acrostichus ziaelasi n. sp.
503	(Nematoda: Diplogastridae) isolated from the beetle Ziaelas formosanus, a
504	tenebrionid symbiont of the termite Odontotermes formosanus with remarks on
505	the genus Acrostichus Rahm, 1928. Zoologischer Anzeiger 286, 20-30. DOI:
506	10.1016/j.jcz.2020.03.002
507	Kanzaki, N., Yamashita, T., Lee, J.S., Shih, PY., Ragsdale, E.J. & Shinya, R. (2021).
508	Tokorhabditis n. gen. (Rhabditida, Rhabditidae), a comparative nematode model
509	for extremophilic living. Scientific Reports 11, 16470. DOI: 10.1038/s41598-021-
510	95863-1
511	Kanzaki, N., Ikeda, Y. & Shinya, R. (2023). Onthodiplogaster japonica n. gen., n. sp.
512	(Rhabditida: Diplogastridae) isolated from Onthophagus sp. (Coleoptera:

- 513 Scarabaeidae) from Japan. *Scientific Reports* 13, 6470. DOI: 10.1038/s41598514 023-33586-1
- 515 Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002). MAFFT: a novel method for
 516 rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids*
- 517 *Research* 30, 3059-3066. DOI: 10.1093/nar/gkf436
- 518 Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. (2009). A rapid and
- 519 precise diagnostic method for detecting the pinewood nematode *Bursaphelenchus*
- 520 *xylophilus* by loop-mediated isothermal amplification (LAMP). *Phytopathology*
- 521 99, 1365-1369. DOI: 10.1094/PHYTO-99-12-1365
- 522 Kreis, H.A. (1932). Beiträge zur Kenntnis pflanzenparasitischer Nematoden. Zeitschrift
 523 *für Parasitenkunde* 5, 184-194.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018). MEGA X: molecular
 evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* 35, 1547-1549. DOI: 10.1093/molbev/msy096
- 527 Kuraku, S., Zmasek, C.M., Nishimura, O. & Katoh, K. (2013). aLeaves facilitates on-
- 528 demand exploration of metazoan gene family trees on MAFFT sequence
- alignment server with enhanced interactivity. *Nucleic Acids Research* 41, W22-
- 530 W28. DOI: 10.1093/nar/gkt389
- 531 Larget, B. & Simon, D.L. (1999). Markov chain Monte Carlo algorithms for the
- 532 Bayesian analysis of phylogenetic trees. *Molecular Biology and Evolution* 16,
- 533 750-759. DOI: 10.1093/oxfordjournals.molbev.a026160
- 534 Ledón-Rettig, C.C., Moczek, A.P. & Ragsdale, E.J. (2018). *Diplogastrellus* nematodes
- are sexually transmitted mutualists that alter the bacterial and fungal communities

536	of their beetle host. Proceedings of the National Academy of Sciences of the
537	United States of America 115, 10696-10701. DOI: 10.1073/pnas.1809606115
538	Maeseneer, J. & d'Herde, J. (1963). Méthodes utilisées por l'étude des anguillules libres
539	du sol. Revue d'Agriculture 16, 441-447.
540	Mahboob, M. & Tahseen, Q. (2022). Molecular phylogeny and new insight into the
541	stomatal complexity of Fictor platypapillata sp. n. (Diplogastridae: Nematoda)
542	associated with Oniticellus cinctus (Coleoptera: Scarabaeidae). Journal of
543	Helminthology 96, e14. DOI: 10.1017/S0022149X22000050
544	Mahboob, M., Bashir, I., Asif, M., Nazir, N., Jahan, R. & Tahseen, Q. (2022).
545	Molecular and phenotypic characterization of two cryptic species of the predatory
546	genus Mononchoides Rahm, 1928 (Rhabditida: Diplogastridae) and their
547	congeneric affinities. Journal of Helminthology 96, e41. DOI:
548	10.1017/S0022149X22000323
549	Meyl, A.H. (1960). Freilebende Nematoden. In P. Brohmer, P. Ehrmann, and G. Ulmer,
550	eds. Die Tierwelt Mitteleuropas: Freilebende Nematoden. Leipzig, Germany:
551	Quelle & Meyer.
552	Minagawa, N. & Mizukubo, T. (1994). A simplified procedure of transferring
553	nematodes to glycerol for permanent mounts. Nematological Research 24, 75.
554	DOI: 10.3725/jjn1993.24.2_75
555	Mumtaz, S. & Ahmad, I. (2019). Description of a new species of Sachsia Meyl, 1960
556	from India (Nematoda: Diplogastrina). Indian Journal of Nematology 49, 65-70.
557	Paramonov, A.A. (1952). Opyt ekologicheskoi klassifikatsii fitonematod. Trudy

Gelmintologicheskoi Laboratorii, Akademia Nauk SSSR (Moskva) 6, 338-369.

559	Ragsdale.	E.J.	(2015)	. Mouth	dimor	ohism an	d the	evolution	of novelt	v and	diversity	<i>.</i>
~~/	100,000,000,000,000,000,000,000,000,000		1 - 2 - 2			OTTOTT WIT				,		

- 560 Pristionchus pacificus: a nematode model for comparative and evolutionary
- 561 *biology. Nematology Monographs and Perspectives 11.* Sommer, R.J. ed. Leiden:
- 562 Brill, pp. 301-329. DOI: 10.1163/9789004260306_012
- 563 Ragsdale, E.J., Kanzaki, N., Yamashita, T. & Shinya, R. (2022). Tokorhabditis tauri n.
- sp. and *T. atripennis* n. sp. (Rhabditida: Rhabditidae), isolated from *Onthophagus*dung beetles (Coleoptera: Scarabaeidae) from the eastern USA and Japan.
- 566 *Journal of Nematology* 54, e2022-1. DOI: 10.2478/jofnem-2022-0028.
- 567 Rahm, G. (1928). Alguns nematodes parasitas e semiparasitas das plantas culturães do
 568 Brasil. Archivos do Instituto de Biológico de Defesa Agricola e Animal (São
 569 Paolo) 1, 239-251.
- 570 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S.,
- 571 Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). MrBayes 3.2:
- 572 efficient Bayesian phylogenetic inference and model choice across a large model

573 space. *Systematic Biology* 61, 539-542. DOI: 10.1093/sysbio/sys029

- 574 Skrjabin, K.I., Shikobalova N.P., Sobolev, A.A., Paramonov, A.A. & Sudarikov, A.A.
- 575 (1954). Camellanata, Rhabditata, Tylenchata, Trichocephalata and
- 576 Dioctophymata and the distribution of parasitic nematodes by hosts. *Izdatel'stvo*577 *Akademii Nauk SSSR (Moskva)* 4, 1-927.
- 578 Sudhaus, W. & Fürst von Lieven, A. (2003). A phylogenetic classification and
- 579 catalogue of the Diplogastridae (Secernentea, Nematoda). Journal of Nematode
- 580 *Morphology and Systematics* 6, 43-90.

581	Susoy, V., Ragsdale, E.J., Kanzaki, N. & Sommer, R.J. (2015). Rapid diversification
582	associated with a macroevolutionary pulse of developmental plasticity. eLife 4,
583	e05463. DOI: 10.7554/eLife.05463
584	Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. (2012). Simple and quick methods
585	for nematode DNA preparation. Applied Entomology and Zoology 47, 291-294.
586	DOI: doi: 10.1007/s13355-012-0115-9
587	Wachek, F. (1955). Die entoparasitischen Tylenchiden. Parasitologische Schriftenreihe
588	3, 1-119.
589	Weingärtner, I. (1955). Versuch einer Neuordnung der Gattung Diplogaster Schulze,
590	1857 (Nematoda). Zoologische Jahrbücher (Systematik) 83, 248-317.
591	Ye, W., Giblin-Davis, R.M., Braasch, H., Morris, K. & Thomas, W.K. (2007).
592	Phylogenetic relationships among Bursaphelenchus species (Nematoda:
593	Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA
594	sequence data. Molecular Phylogenetics and Evolution 43, 1185-1197. DOI:
595	10.1016/j.ympev.2007.02.006
596	
597	Figure legends
598	
599	Fig. 1. Phylogenetic status of Sachsia putridicola n. sp. among closely related
600	diplogastrids.
601	A subtree was cropped from family-wide tree provided in Supplementary Fig. S1. The
602	Bayesian tree inferred from near full length of SSU and D2-D3 LSU of ribosomal RNA
603	genes. The GTR + G + I model was applied to both loci, and the parameters are as
604	follows: AIC = 51622.23; lnL = -25567.8; freqA = 0.25, freqC = 0.21, freqG = 0.27,

605 freqT =
$$0.27$$
; R(a) = 0.89 , R(b) = 2.47 , R(c) = 2.08 ,; R(d) = 0.89 , R(e) = 3.65 , R(f) =

606 1.00; Pinva = 0.39; Shape = 0.58 for SSU, and AIC = 54978.481; lnL = -27247.532;

607 freqA =0.21, freqC = 0.22, freqG = 0.32, freqT = 0.25; R(a) = 0.46, R(b) = 1.7, R(c) = 1.7

0.91, R(d) = 0.44, R(e) = 3.54, R(f) = 1.00; Pinva = 0.21; Shape = 1.01 for D2-D3 LSU.

609 Posterior probability (PP) values exceeding 50% are given on appropriate clades.

610

Fig. 2. Sachsia putridicola n. sp. adults. A: Male; B: Female; C: Anterior part in right
lateral view; D: Surface of male lip region in left lateral view showing labial and
cephalic sensilla and amphid; E: Stomatal region in left lateral view; F: Stomatal region
in ventral view; G: Body surface structure of deirid region in left lateral view.

615

616 Fig. 3. Sachsia putridicola n. sp. adults. A: Anterior gonad of female in right lateral 617 view; B: Female vulval region in ventral view; C: Female body surface of post-deirid 618 region in right lateral view; D: Female whole tail in right lateral view; E: Female 619 rectum-anal region in right lateral view; F: Close-up of female anal region showing 620 surface striations around phasmid in right lateral view; F: Female anal region in ventral 621 view; G: Male gonad in right lateral view; H: Male tail region in right lateral view; I: 622 Surface of male tail region in right lateral view where lateral field is indicated by grey 623 colour; J: Male tail region in ventral view; K: Spicule and gubernaculum in left lateral 624 view.

625

Fig. 4. Differential interference contrast micrographs of the anterior region of *Sachsia putridicola* n. sp. A: Stoma and anterior pharynx of male in four different focal planes;
B: Posterior pharynx of female in three different focal planes. Abbreviations are as

629	follows: am = amphid; bb = basal bulb; cs = cephalic sensilla; dr = deirid; ep =
630	secretory-excretory pore; ls = labial sensilla; mb = median bulb (metacorpus); nr =
631	nerve ring.
632	
633	Fig. 5. Differential interference contrast micrographs of the adult male tail of Sachsia
634	putridicola n. sp. All images are in right lateral view. A: Anterior part of tail in four
635	different focal planes; B: Posterior part of tail in three different focal planes. Genital
636	papillae are labeled with the suffix "d" indicates papillae that open laterally or
637	subdorsally. Abbreviations are as follows: ph = phasmid; v + number, ad, pd = genital
638	papillae according to the labelling of Sudhaus & Fürst von Lieven (2003); vs = ventral
639	single papilla.
640	
641	Fig. 6. Differential interference contrast micrographs of the female of Sachsia
642	putridicola n. sp. All images are in right lateral view. A: Vulval region in three different
643	focal planes; B: Anal region in three different focal planes. Abbreviations are as
644	follows: a = anus; lf = lateral field; m = vulval muscle; ph = phasmid; rg = rectal gland;
645	vg = vulval gland; vo = vulval opening.
646	
647	Supplementary Figure S1. Phylogenetic relationship among 116 diplogastrids.
648	Rhabditoides inermis was used for an outgroup species. Analytical parameters are same
649	as Fig. 1.
650	
651	Supplementary Figure S2. Phylogenetic relationship among 26 diplogastrids. The
(50	
652	OTUs appeared in Fig. 1 were phylogenetically re-analyzed using Micoletzkya japonica

- as an outgroup species. The Bayesian tree inferred from near full length of SSU and D2-
- 654 D3 LSU of ribosomal RNA genes. The GTR + G + I model was applied to both loci,
- and the parameters are as follows: AIC = 13199.87; nL= -6540.85; freqA = 0.25, freqC
- 656 = 0.22, freqG = 0.27, freqT = 0.26, R(a) = 0.68, R(b) = 2.35, R(c) = 1.74, R(d) = 0.79, R(c) = 0.74, R(d) = 0.79, R(c) = 0.74, R(d) = 0.79, R(c) = 0.74, R(d) = 0.74, R(d) = 0.79, R(c) = 0.74, R(d) = 0.74, R
- 657 R(e) = 3.64, R(f) = 1.00; Pinva = 0.57; Shape = 0.46 for SSU, and AIC = 12252.50; lnL
- 658 = -6067.04; freqA = 0.20, freqC = 0.22, freqG = 0.33, freqT = 0.25; R(a) = 0.29, R(b) = 0.29
- 659 1.61, R(c) = 0.91, R(d) = 0.47, R(e) = 3.70, R(f) = 1.00; Pinva = 0.34; Shape = 1.06 for
- 660 D2-D3 LSU. Posterior probability (PP) values exceeding 50% are given on appropriate
- clades.

	Male		Female
_	Holotype	Paratypes	paratypes
n	-	9	10
L	546	554 ± 39	651 ± 66
		(486-607)	(575-746)
a	14.7	15.5 ± 2.0	13.2 ± 0.7
		(12.7-19.0)	(11.8-14.0)
b	7.5	7.4 ± 0.6	8.3 ± 0.9
		(6.5-8.2)	(7.2-10.2)
c	7.0	6.5 ± 0.4	4.7 ± 0.5
		(5.8-7.2)	(4.0-5.6)
c'	3.9	4.2 ± 0.3	6.2 ± 0.9
		(3.7-4.7)	(4.8-7.7)
T or V	70.7	72.5 ± 5.2	45.6 ± 2.2
		(60.8-78.1)	(41.1-48.3)
Stoma diam.	3.6	3.6 ± 0.3	3.6 ± 0.3
		(3.2-3.9)	(3.2-3-9)
Stoma length	6.4	6.8 ± 0.4	6.9 ± 0.4
		(6.4-7.5)	(5.7-7.1)
Stoma length /	1.8	1.9 ± 0.2	1.9 ± 0.2
diam. ratio		(1.6-2.2)	(1.5-2.1)
Median bulb diam.	10.0	9.8 ± 0.8	10.9 ± 0.6
		(8.6-10.7)	(10.0-12.1)
Basal bulb diam.	8.2	8.4 ± 0.8	9.5 ± 0.6
		(7.1-10.0)	(8.9-10.7)
Anterior pharynx	33	34 ± 1.8	35 ± 2.9
length		(31-36)	(32-40)
Posterior pharynx	34	35 ± 2.2	37 ± 2.8
length		(31-38)	(33-41)
Anterior / posterior	0.95	0.96 ± 0.06	0.95 ± 0.05
pharynx lengths		(0.86-1.05)	(0.87-1.05)
ratio			
Nerve ring from	56	59 ± 2.5	59 ± 3.9
anterior end		(55-62)	(55-66)

Table 1. Morphometric values of *Sachsia putridicola* n. sp.

Secretory-excretory	79	86 ± 4.5	88 ± 6.2
pore from anterior	12	(78-94)	(80-101)
end		(70,74)	(00 101)
Maximum body	37	36 ± 5.0	49 ± 5.9
diam.		(25-40)	(43-60)
Cloacal or anal	20.0	20.2 ± 0.8	22.4 ± 1.8
body diam.		(19.0-21.4)	(19.0-25.0)
Tail length 1)	79	85 ± 8.1	140 ± 25
		(75-95)	(102-188)
Entire gonad length	386	403 ± 50	-
2)		(295-463)	
Reflexed part of	85	83 ± 14	-
testis		(63-100)	
Vas deferens length	115	119 ± 15	-
		(96-143)	
Ratio of vas	29.9	29.6 ± 2.4	-
deferens to total		(25.6-32.7)	
gonad length in %			
Spicule length in	25.7	24.6 ± 1.4	-
curve		(22.1-26.4)	
Spicule length in	24.3	23.4 ± 1.4	-
chord		(21.4-25.0)	
Gubernaculum	17.5	16.8 ± 1.4	-
length in chord		(13.9-18.6)	
Tail spike length	43	45 ± 5.9	-
		(36-54)	
Ratio of tail spike	55.2	52.4 ± 2.4	-
to total tail length		(47.6-56.3)	
in %			
Vulval body diam.	-	-	49 ± 5.7
3)			(43-60)
Anterior ovary	-	-	242 ± 85
length			(100-371)
Posterior ovary	-	-	21 ± 84
length			(105-348)

Anus-phasmid	-	-	12.6 ± 2.5
distance			(7.1-15.5)
Anus-phasmid	-	-	0.56 ± 0.1
distance / anal			(0.38-0.67)
body diam. ratio ⁴⁾			
Phasmid position to	-	-	9.1 ± 2.4
total tail length			(6.1-14.0)
in % ⁵⁾			

664

665 1) Tail length including tail spike.

666 2) Gonad length including reflexed part and *vas deferens*.

667 3) Body diam. is maximum at vulval position in and female (vulval body diam. = maximum

- 668 body diam.) in the most cases.
- 669 4) Calculated as anus-phasmid distance / anal body diam.
- 670 5) Calculated as 100 x anus-phasmid distance / whole tail length.

672 **Supplementary Table S1.** The molecular sequences of 115 diplogatrid species

673 compared in the present study. *Rhabditoides inermis* served as outgroup species.

Species	28S (LSU)	18S (SSU)	
Rhabditoides inermis (Outgroup species)	EU195981	AF082996	
Sachsia putridicola n. sp.	LC773616*		
Acrostichus floridensis	LC374587	LC374587	
Acrostichus halicti	AB455818	AB455817	
Acrostichus megaloptae	AB477074	AB477077	
Acrostichus palmarum RGD194	LC374584	LC374584	
Acrostichus puri	AB477076	AB477079	
Acrostichus rhynchophori	LC374583	LC374583	
Acrostichus sp. "femorata"	LC530747	LC530748	
Acrostichus ziaelasi	LC530735	LC530736	
Allodiplogaster hylobii	KJ877266	KJ877224	
Allodiplogaster cf. lucani	AB597244	AB597233	
Allodiplogaster seani	JX163970	JX163979	
Allodiplogaster josephi	EU195999	EU196025	
Allodiplogaster sudhausi	KJ877267	KJ877226	
Butlerius sp. VS-2014	KJ877247	KJ877204	
Cutidiplogaster manati	MT160762	MT160758	
Cutidiplogaster sp. "LT"	MT160763	MT160759	
Demaniella sp. NKZ367	LC210628	LC210625	
Diplogasteriana schneideri	KJ877246	KJ877203	
Diplogasteriana sp. RS9000	KJ877245	KJ877202	

Diplogasteroides (Fuchsnema) halleri	KJ877253	KJ877227
Diplogasteroides (Fuchsnema) sp. RS5537	KJ877254	KJ877228
Diplogasteroides (Pseudodiplogaster) magnus	KJ877270	KJ877214
Diplogasteroides (Pseudodiplogaster) nasuensis	LC0276755	LC027674
Diplogasteroides (Pseudodiplogaster) sp. RS5444	KJ877271	KJ877215
Diplogasteroides (Rhabdontolaimus) andrassyi	AB808723	AB808722
Diplogasteroides (Rhabdontolaimus) asiaticus	LC027673	LC027672
Diplogasteroides (Rhabdontolaimus) luxuriosae	LC099974	LC099973
Diplogasteroides nix	LC145090	LC145091
Diplogastrellus gracilis	KJ877249	KJ877216
Diplogastrellus metamasius	EU419762	EU419758
Diplogastrellus (Metadiplogaster) sp. RS5608	KJ877248	KJ877205
Diplogastrellus (Metadiplogaster) sp. "Tadami"	AB597250	AB597239
Eudiplogasterium levidentum	KJ877258	KJ877206
Fictor platypaillata	-	MW621342
Fictor stercorarius	KJ877282	KJ877235
Fictor sp. RS9001	KJ877280	KJ877233
Fictor sp. RS9002	KJ877281	KJ877234
Koerneria cf. luziae	AB597243	AB597232
Koerneria sp. RS9004	KJ877283	KJ877239
Leptojacobus dorci	KJ877277	KF924399
Levipalatum texanum	KJ877257	KJ877221
Mehdinema alii	KJ877285	KJ877213
Micoletzkya buetschlii	KJ877252	JX163973

Micoletzkya calligraphi	KJ531092	KJ531036
Micoletzkya hylurginophila	KJ531102	KJ531046
Micoletzkya inedia	KJ531104	KJ531048
Micoletzkya japonica	JX163967	JX163976
Micoletzkya masseyi	JX163968	JX163977
Micoletzkya palliati	JX163965	JX163974
Micoletzkya sexdentati	KJ531094	KJ531038
Mononchoides compositicola	-	GU943511
Mononchoides kanzakii	MW763063	MW649133
Mononchoides macrospiculum	LN827617	LN827618
Mononchoides striatus	-	AY593924
Mononchoides sp. RS5441	KJ877262	KJ877210
Mononchoides sp. RS9007	KJ877263	KJ877209
Mononchoides sp. RS9008	KJ877264	KJ877211
Mononchoides sp. NK2017	LC210629	LC210626
Neodiplogaster acaloleptae	LC107878	LC107877
Neodiplogaster crenatae	AB326309	AB326310
Neodiplogaster sp. RGD904	AB478641	AB478640
Neodiplogaster sp. RS9009	KJ877265	KJ877212
Neodiplogaster unguispiculata	MH048998	MH049001
Neodiplogaster unguispiculata	MH048996	MH048999
Neodiplogaster unguispiculata	MH048997	MH049000
Oigolaimella attenuata	KJ877276	KJ877219
Oigolaimella sp. RS9010	KJ877275	KJ877218

<i>Oigolaimella</i> sp. RGD844	AB478631	AB478630	
Oigolaimella sp. RGD884	AB478633	AB478632	
Onthodiplogaster japonica	LC72	LC721118*	
Parapristionchus giblindavisi	JX163972	JX163981	
Parasitodiplogaster citrinema	AY840555	AB901285	
Parasitodiplogaster maxinema	AB810253	AB901283	
Parasitodiplogaster nymphanema	LC109318	LC109317	
Parasitodiplogaster obtusinema	LC101737	LC101736	
Paroigolaimella micrura	KJ877259	KJ877207	
Paroigolaimella stresemanni	KJ877261	KJ877230	
Pristionchus aerivorus	KJ705000	KJ704996	
Pristionchus americanus	KJ704999	KJ704995	
Pristionchus arcanus	KT188878	KT188848	
Pristionchus bucculentus	AB852582	AB852581	
Pristionchus entomophagus	KT188873	KT188843	
Pristionchus exspectatus	KT188879	KT188849	
Pristionchus fissidentatus	KJ877273	KT188855	
Pristionchus japonicus	KT188880	KT188850	
Pristionchus lheritieri	KT188876	KT188846	
Pristionchus marianneae	KT188866	KT188836	
Pristionchus maupasi	LC011449	LC011448	
Pristionchus pacificus	EU195982	U81584	
Pristionchus racemosae	KT188888	KT188859	
Pristionchus sycomori	KT188886	KT188857	

Pristionchus triformis	KT188884	KT188854
Pristionchus uniformis	KJ877272	KJ877236
Pseudodiplogasteroides cf. compositus	AB597248	AB597237
Pseudodiplogasteroides sp. SB257	KJ877250	KJ877217
Pseudodiplogasteroides sp. 'Luc8'	AB597249	AB597238
Rhabditidoides aegus	AB597251	AB597240
Rhabditidoides humicolus	AB440322	LC095813
Rhabditidoides sp. RS5443	KJ877251	KJ877229
Rhabditolaimus anoplophorae	AB849949	AB849946
Rhabditolaimus leuckarti	JQ005870	JQ005865
Rhabditolaimus sp. RS5442	KJ877255	KJ877220
Rhabditolaimus sp. RS5414	JQ005871	JQ005866
Rhabditolaimus sp. RSA134	JQ005872	JQ005867
Rhabditolaimus sp. "Episcapha"	AB849950	AB849947
Rhabditolaimus sp. "Euwallacea"	AB849951	AB849948
Sachsia zurstrasseni	KJ877260	KJ877208
Sudhausia aristotokia	KJ877278	KJ877231
Sudhausia crassa	KJ877279	KJ877232
Sudhausia floridensis	LC214842	LC214841
Teratodiplogaster fignewmani	AB440311	AB440308
Teratodiplogaster sp. 1 VS-2014	KJ877268	KJ877225
Teratodiplogaster sp. 2 VS-2014	KJ877269	KJ877223
Teratodiplogaster variegatae	LC004468	LC004467
Tylopharynx foetidus	-	EU306343

Diplogastridae sp. "ST"

0/4 Long sequence menuting near run 550, 115 and D1-D4 regions of	674	* Long sequence in	cluding near full	SSU, ITS an	d D1-D4 regions	of LSU
---	-----	--------------------	-------------------	-------------	-----------------	--------

675