Log in
Language:

WEKO3

  • Top
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

  1. Journal Article

Applicability of remote sensing and machine learning for predicting bulk soil electrical conductivity under different forest types in central Japan

https://repository.ffpri.go.jp/records/2005873
https://repository.ffpri.go.jp/records/2005873
149cf9d7-86e2-4149-8fd9-b2d11bf7c672
Item type デフォルトアイテムタイプ(シンプル)_学術雑誌論文(1)
Title
Title Applicability of remote sensing and machine learning for predicting bulk soil electrical conductivity under different forest types in central Japan
Language en
Creator Win Kyaw

× Win Kyaw

en Win Kyaw

Search repository
Sato Tamotsu

× Sato Tamotsu

en Sato Tamotsu

Search repository
Hiroshima Takuya

× Hiroshima Takuya

en Hiroshima Takuya

Search repository
Keyword
Subject Bulk soil electrical conductivity, Extreme gradient boosting, Random forest, Surface soil moisture
Publisher
Publisher Elsevier
Language
Language eng
Resource Type
Resource Type(Simple) journal article
Relation
Identifier Type DOI
Related Identifier https://doi.org/10.1016/j.soilad.2025.100045
Source Identifier
Source Identifier Type EISSN
Source Identifier 2950-2896
Bibliographic Information en : Soil Advances

Volume Number 3, p. 100045, Issue Date 2025-04-10
Reference Number
FR2025-04-18
Back
0
views
See details
Views

Versions

Ver.1 2025-06-20 03:18:06.011901
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3